【題目】(數(shù)學(xué)概念)
若等邊三角形的三個頂點(diǎn)D、E、F分別在△ABC的三條邊上,我們稱等邊三角形DEF是△ABC的內(nèi)接正三角形.
(概念辨析)
(1)下列圖中△DEF均為等邊三角形,則滿足△DEF是△ABC的內(nèi)接正三角形的是 .
A. B.
C.
(操作驗(yàn)證)
(2)如圖①.在△ABC中,∠B=60°,D為邊AB上一定點(diǎn)(BC>BD),DE=DB,EM平分∠DEC,交邊AC于點(diǎn)M,△DME的外接圓與邊BC的另一個交點(diǎn)為N.
求證:△DMN是△ABC的內(nèi)接正三角形.
(知識應(yīng)用)
(3)如圖②.在△ABC中,∠B=60°,∠A=45°,BC=2,D是邊AB上的動點(diǎn),若邊BC上存在一點(diǎn)E,使得以DE為邊的等邊三角形DEF是△ABC的內(nèi)接正三角形.設(shè)△DEF的外接圓⊙O與邊BC的另一個交點(diǎn)為K,則DK的最大值為 ,最小值為 .
【答案】(1)C;(2)證明見解析;(3)2,.
【解析】
(1)由概念即可得;
(2)由等弧所對的圓周角相等和角平分線定理即可證得;
(3)
(1)由概念即可得答案為:C;
(2)∵DE=DB,∠B=60°
∴∠DEB=∠B=60°
∴∠DMN=∠DEB=60°
∴∠DEC=180°-∠DEB=120°
∵EM平分∠DEC
∴∠DEM= ∠DEC=60°
∴∠DNM=∠DEM==60°
∴∠NDM=180°-∠DMN-∠DNM=60°
∴∠NDM=∠DMN=∠DNM=60°
∴△DMN是正三角形
∵由概念得△DMN是△ABC的內(nèi)接三角形
∴△DMN是△ABC的內(nèi)接正三角形.
(3)2 ;
思路:①最大值
如圖,當(dāng) K 與C 重合時, DK 最大,而△ BDK 是等邊三角
形,所以 DK BK BC 2
②最小值
如右圖,設(shè) DK=BD=BK=x ,則CK=2- x .
由手拉手模型:△ BDK 和△ DEF 都是等邊三角形,且共點(diǎn) D.易證△ BDE △ KDF .
∴ BE= KF
∵∠DKF=∠BDK= 60°,
∴ KF / / AB
∴
即
下面在圖中求AB,
AB=,
∵BE≤BC=2,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=a(x+2)(x-4)(a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=-x+b與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為-5.
(1)求拋物線的函數(shù)表達(dá)式;
(2)P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB,求△PBD面積的最大值;
(3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個單位的速度運(yùn)動到F,再沿線段FD以每秒2個單位的速度運(yùn)動到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時,點(diǎn)M在整個運(yùn)動過程中用時最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=8cm,BC=6cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動(不包括 C點(diǎn)),點(diǎn) P運(yùn)動的速度為1cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動到A點(diǎn)(不包括A點(diǎn)),速度為2cm/s,若點(diǎn) P、Q 分別從B、C 同時運(yùn)動,且運(yùn)動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當(dāng) t 為何值時,P、Q 兩點(diǎn)的距離為 4cm?
(2)請用配方法說明,點(diǎn)P運(yùn)動多少時間時,四邊形BPQA的面積最?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,分別以頂點(diǎn)A、B、C、D為圓心,1為半徑畫弧,四條弧交于點(diǎn)E、F、G、H,則圖中陰影部分的外圍周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB與DE相交于點(diǎn)F,連接DB、CE.
(1)若,求∠AFD的度數(shù);
(2)若∠ADE=∠ABC,求證△ADB∽△AEC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形 OABC 是矩形,點(diǎn) B 的坐標(biāo)為(4,3).
(1)直接寫出A、C兩點(diǎn)的坐標(biāo);
(2)平行于對角線AC的直線 m 從原點(diǎn)O出發(fā),沿 x 軸正方向以每秒 1 個單位長度的速度運(yùn)動,設(shè)直線 m 與矩形 OABC 的兩邊分別交于點(diǎn)M、N,設(shè)直線m運(yùn)動的時間為t(秒).
①若 MN=AC,求 t 的值;
②設(shè)△OMN 的面積為S,當(dāng) t 為何值時,S=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出“遼陽—葫蘆島海濱觀光一日游”項(xiàng)目,團(tuán)隊人均報名費(fèi)用y(元)與團(tuán)隊報名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊人均報名費(fèi)用不能低于88元.旅行社收到的團(tuán)隊總報名費(fèi)用為w(元).
(1)直接寫出當(dāng)x≥20時,y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)兒童節(jié)當(dāng)天旅行社收到某個團(tuán)隊的總報名費(fèi)為3000元,報名旅游的人數(shù)是多少?
(3)當(dāng)一個團(tuán)隊有多少人報名時,旅行社收到的總報名費(fèi)最多?最多總報名費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將每件進(jìn)價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com