【題目】(數(shù)學(xué)概念)

若等邊三角形的三個頂點(diǎn)DE、F分別在ABC的三條邊上,我們稱等邊三角形DEFABC的內(nèi)接正三角形

(概念辨析)

(1)下列圖中DEF均為等邊三角形,則滿足DEFABC的內(nèi)接正三角形的是

A.    B.

C.

(操作驗(yàn)證)

(2)如圖.在ABC,∠B=60°,D為邊AB上一定點(diǎn)BCBD),DEDB,EM平分DEC交邊AC于點(diǎn)M,DME的外接圓與邊BC的另一個交點(diǎn)為N

求證DMNABC的內(nèi)接正三角形

(知識應(yīng)用)

(3)如圖.在ABC,∠B=60°,∠A=45°,BC=2,D是邊AB上的動點(diǎn)若邊BC上存在一點(diǎn)E使得以DE為邊的等邊三角形DEFABC的內(nèi)接正三角形.設(shè)DEF的外接圓O與邊BC的另一個交點(diǎn)為K,DK的最大值為 ,最小值為

【答案】(1)C;(2)證明見解析;(3)2,

【解析】

(1)由概念即可得;

2)由等弧所對的圓周角相等和角平分線定理即可證得;

3

(1)由概念即可得答案為:C;

2)∵DE=DB,∠B=60°

∴∠DEB=B=60°

∴∠DMN=DEB=60°

∴∠DEC=180°-DEB=120°

EM平分∠DEC

∴∠DEM= DEC=60°

∴∠DNM=DEM==60°

∴∠NDM=180°-DMN-DNM=60°

∴∠NDM=DMN=DNM=60°

∴△DMN是正三角形

∵由概念得△DMN是△ABC的內(nèi)接三角形

∴△DMN是△ABC的內(nèi)接正三角形.

32 ;

思路:①最大值

如圖,當(dāng) K C 重合時, DK 最大,而△ BDK 是等邊三角

形,所以 DK BK BC 2

②最小值

如右圖,設(shè) DK=BD=BK=x ,則CK=2- x .

由手拉手模型:△ BDK 和△ DEF 都是等邊三角形,且共點(diǎn) D.易證△ BDE △ KDF .

∴ BE= KF

DKF=BDK= 60°,

∴ KF / / AB

下面在圖中求AB

AB=,

BEBC=2,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax+2)(x-4)(a為常數(shù),且a0)與x軸從左至右依次交于AB兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=-x+b與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為-5

1)求拋物線的函數(shù)表達(dá)式;

2P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB,求△PBD面積的最大值;

3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個單位的速度運(yùn)動到F,再沿線段FD以每秒2個單位的速度運(yùn)動到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時,點(diǎn)M在整個運(yùn)動過程中用時最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AC=8cm,BC=6cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動不包括 C點(diǎn),點(diǎn) P運(yùn)動的速度為1cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動到A點(diǎn)不包括A點(diǎn),速度為2cm/s,若點(diǎn) P、Q 分別從B、C 同時運(yùn)動,且運(yùn)動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.

(1)當(dāng) t 為何值時,P、Q 兩點(diǎn)的距離為 4cm?

(2)請用配方法說明,點(diǎn)P運(yùn)動多少時間時,四邊形BPQA的面積最?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,分別以頂點(diǎn)A、B、C、D為圓心,1為半徑畫弧,四條弧交于點(diǎn)E、F、G、H,則圖中陰影部分的外圍周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABCRtADE,∠BAC=∠DAE=90°,ABDE相交于點(diǎn)F,連接DB、CE

(1),AFD的度數(shù);

(2)ADE=∠ABC,求證ADBAEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形 OABC 是矩形,點(diǎn) B 的坐標(biāo)為(4,3).

(1)直接寫出A、C兩點(diǎn)的坐標(biāo);

(2)平行于對角線AC的直線 m 從原點(diǎn)O出發(fā),沿 x 軸正方向以每秒 1 個單位長度的速度運(yùn)動,設(shè)直線 m 與矩形 OABC 的兩邊分別交于點(diǎn)M、N,設(shè)直線m運(yùn)動的時間為t(秒).

MNAC,求 t 的值;

設(shè)OMN 的面積為S,當(dāng) t 為何值時,S=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽葫蘆島海濱觀光一日游項(xiàng)目,團(tuán)隊人均報名費(fèi)用y(元)與團(tuán)隊報名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊人均報名費(fèi)用不能低于88.旅行社收到的團(tuán)隊總報名費(fèi)用為w(元).

(1)直接寫出當(dāng)x≥20時,yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當(dāng)天旅行社收到某個團(tuán)隊的總報名費(fèi)為3000元,報名旅游的人數(shù)是多少?

(3)當(dāng)一個團(tuán)隊有多少人報名時,旅行社收到的總報名費(fèi)最多?最多總報名費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將每件進(jìn)價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.

(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案