【題目】如圖,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB與DE相交于點F,連接DB、CE.
(1)若,求∠AFD的度數(shù);
(2)若∠ADE=∠ABC,求證△ADB∽△AEC.
【答案】(1)90°;(2)證明見解析
【解析】
由,∠ADF=∠EDA,證得 △ADF∽△EDA,從而得到 ∠AFD=∠EDA=90°;
由∠ADE=∠ABC,∠BAC=∠DAE,證得 △ADE∽△ABC,從而得到,然后變形為 ,再求得∠DAB=∠EAC,然后根據(jù) ∠BAC=∠DAE,即可證得.
(1)∵,∠ADF=∠EDA,
∴△ADF∽△EDA.
∴∠AFD=∠EDA.
∵∠DAE=90°,∴∠AFD=90°.
(2)∵∠ADE=∠ABC,∠BAC=∠DAE, ∴△ADE∽△ABC.
∴.
∴.
又∵∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE.
∴∠DAB=∠EAC.
∴△ADB∽△AEC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中, ,,,直線l從與AC重合的位置開始以每秒個單位的速度沿CB方向平行移動,且分別與CB,AB邊交于D,E兩點,動點F從A開始沿折線ACCBBA運動,點F在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位,點F與直線l同時出發(fā),設運動的時間為t秒,當點F第一次回到點A時,點F與直線 l同時停止運動.運動過程中,作點F關于直線DE的對稱點,記為點,若形成的四邊形 為菱形,則所有滿足條件的之和為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,以 AD為直徑作⊙O,⊙O分別交AB、AC于 E、F.
(1)求證:BE=CF;
(2)設 AD、EF相交于G,若 EF=8,⊙O的半徑為5,求DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(數(shù)學概念)
若等邊三角形的三個頂點D、E、F分別在△ABC的三條邊上,我們稱等邊三角形DEF是△ABC的內(nèi)接正三角形.
(概念辨析)
(1)下列圖中△DEF均為等邊三角形,則滿足△DEF是△ABC的內(nèi)接正三角形的是 .
A. B.
C.
(操作驗證)
(2)如圖①.在△ABC中,∠B=60°,D為邊AB上一定點(BC>BD),DE=DB,EM平分∠DEC,交邊AC于點M,△DME的外接圓與邊BC的另一個交點為N.
求證:△DMN是△ABC的內(nèi)接正三角形.
(知識應用)
(3)如圖②.在△ABC中,∠B=60°,∠A=45°,BC=2,D是邊AB上的動點,若邊BC上存在一點E,使得以DE為邊的等邊三角形DEF是△ABC的內(nèi)接正三角形.設△DEF的外接圓⊙O與邊BC的另一個交點為K,則DK的最大值為 ,最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 O 是等邊△ABC 內(nèi)一點,∠AOB=110°,∠BOC=a.將△BOC 繞點 C 按順時針方向旋轉(zhuǎn) 60°得△ADC,則△ADC≌△BOC,連接 OD.
(1)求證:△COD 是等邊三角形;
(2)當α=120°時,試判斷 AD 與 OC 的位置關系,并說明理由;
(3)探究:當 a 為多少度時,△AOD 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉(zhuǎn)180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是( 。
A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在x軸上,OA=4,將線段OA繞點O順時針旋轉(zhuǎn)120°至OB的位置.
(1)求點B的坐標;
(2)求經(jīng)過點A.O、B的拋物線的解析式;
(3)在此拋物線的對稱軸上,是否存在點P,使得以點P、O、B為頂點的三角形是等腰三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com