如圖9,拋物線(xiàn)y=ax2+c(a>0)經(jīng)過(guò)梯形ABCD的四個(gè)頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1, -3).

(1)求拋物線(xiàn)的解析式;(3分)
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A、B兩點(diǎn)的距離之和為最小時(shí),求此時(shí)點(diǎn)M的坐標(biāo);(2分)
(3)在第(2)問(wèn)的結(jié)論下,拋物線(xiàn)上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P坐標(biāo).(4分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,將拋物線(xiàn)y1=2x2向右平移2個(gè)單位,得到拋物線(xiàn)y2的圖象,則y2=               ;

 

 

 

 

 

 

 

(2)P是拋物線(xiàn)y2對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直線(xiàn)xt平行于y軸,分別與直線(xiàn)yx、拋物線(xiàn)y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿(mǎn)足條件的t的值,則t            

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·大連)(本題12分)如圖15,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B (3,

0)、C(0,3)三點(diǎn),對(duì)稱(chēng)軸與拋物線(xiàn)相交于點(diǎn)P、與直線(xiàn)BC相交于點(diǎn)M,連接PB.

(1)求該拋物線(xiàn)的解析式;

(2)拋物線(xiàn)上是否存在一點(diǎn)Q,使△QMB與△PMB的面積相等,若存在,求點(diǎn)Q的坐標(biāo);

若不存在,說(shuō)明理由;

(3)在第一象限、對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在一點(diǎn)R,使△RPM與△RMB的面積相

等,若存在,直接寫(xiě)出點(diǎn)R的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1) 如圖,將拋物線(xiàn)y1=2x2向右平移2個(gè)單位,
得到拋物線(xiàn)y2的圖象,則y2=              
(2)P是拋物線(xiàn)y2對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直線(xiàn)x
t平行于y軸,分別與直線(xiàn)yx、拋物線(xiàn)y2
于點(diǎn)AB.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿(mǎn)足條件的
t的值,則t           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1) 如圖,將拋物線(xiàn)y1=2x2向右平移2個(gè)單位,得到拋物線(xiàn)y2的圖象,則y2=              ;

(2)P是拋物線(xiàn)y2對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直線(xiàn)xt平行于y軸,分別與直線(xiàn)yx、拋物線(xiàn)y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿(mǎn)足條件的t的值,則t           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省九年級(jí)中考數(shù)學(xué)試卷4(解析版) 題型:解答題

如圖1,拋物線(xiàn)y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線(xiàn)上另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.

(1)填空:點(diǎn)B的坐標(biāo)為(_        ),點(diǎn)C的坐標(biāo)為(_        );

(2)連接OA,若△OAC為等腰三角形.

①求此時(shí)拋物線(xiàn)的解析式;

②如圖2,將△OAC沿x軸翻折后得△ODC,點(diǎn)M為①中所求的拋物線(xiàn)上點(diǎn)A與點(diǎn)C兩點(diǎn)之間一動(dòng)點(diǎn),且點(diǎn)M的橫坐標(biāo)為m,過(guò)動(dòng)點(diǎn)M作垂直于x軸的直線(xiàn)l與CD交于點(diǎn)N,試探究:當(dāng)m為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案