【題目】高空的氣溫與距地面的高度有關,某地地面氣溫為24℃,且已知距離地面高度每升高1km,氣溫下降6℃

1)寫出該地空中氣溫T)與距離地面高度hkm)之間的關系式;

2)求距地面3km處的氣溫T

【答案】(1)T=24-6h26℃

【解析】

1)直接利用空中氣溫T=地面溫度-6×上升高度,進而得出答案;

2)將h=3代入(1)中所求的函數(shù)關系式,計算即可求出答案.

1)∵離地面距離每升高1 km,氣溫下降6℃

∴該地空中氣溫T)與高度hkm)之間的函數(shù)表達式為:T=24-6h;

2)當h=3時,T=24-6×3=6).

即距地面3km處的氣溫T6℃

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若點P (m+5,m+1) 在直角坐標系的y軸上,則點P的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ECD的延長線上一點,連接BEAD于點F,且AF2FD.

(1)求證:△ABF∽△CEB

(2)若△CEB的面積為9,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,∠ABC=,AB=8,AD=3,BC=4,點PAB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點.現(xiàn)將線段BA繞點B按順時針方向旋轉90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.如圖,若該拋物線經(jīng)過原點O,且a=-.

(1)求點D的坐標及該拋物線的解析式;

(2)連結CD.問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】13×13的網(wǎng)格圖中,已知ABC和點M(1,2).

(1)以點M為位似中心,畫出ABC的位似圖形A′B′C′,其中A′B′C′ABC的位似比為2;

(2)寫出A′B′C′的各頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關系式;

(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;

(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對單項式“0.6a”可以解釋為:一件商品原價為a元,若按原價的6折出售,這件商品現(xiàn)在的售價是0.6a元,請你對“0.6a”再賦予一個含義:

查看答案和解析>>

同步練習冊答案