【題目】操作:“如圖1,P是平面直角坐標(biāo)系中一點(diǎn)(x軸上的點(diǎn)除外),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,點(diǎn)C繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)60°得到點(diǎn)Q.”我們將此由點(diǎn)P得到點(diǎn)Q的操作稱(chēng)為點(diǎn)的T變換.
(1)點(diǎn)P(a,b)經(jīng)過(guò)T變換后得到的點(diǎn)Q的坐標(biāo)為 ;若點(diǎn)M經(jīng)過(guò)T變換后得到點(diǎn)N(6,﹣),則點(diǎn)M的坐標(biāo)為 .
(2)A是函數(shù)y=x圖象上異于原點(diǎn)O的任意一點(diǎn),經(jīng)過(guò)T變換后得到點(diǎn)B.
①求經(jīng)過(guò)點(diǎn)O,點(diǎn)B的直線(xiàn)的函數(shù)表達(dá)式;
②如圖2,直線(xiàn)AB交y軸于點(diǎn)D,求△OAB的面積與△OAD的面積之比.
【答案】(1)Q(a+b,b);M(9,﹣2);(2)①y=x;②
【解析】
試題分析:(1)連接CQ可知△PCQ為等邊三角形,過(guò)Q作QD⊥PC,利用等邊三角形的性質(zhì)可求得CD和QD的長(zhǎng),則可求得Q點(diǎn)坐標(biāo);設(shè)出M點(diǎn)的坐標(biāo),利用P、Q坐標(biāo)之間的關(guān)系可得到點(diǎn)M的方程,可求得M點(diǎn)的坐標(biāo);
(2)①可取A(2,),利用T變換可求得B點(diǎn)坐標(biāo),利用待定系數(shù)示可求得直線(xiàn)OB的函數(shù)表達(dá)式;②由待定系數(shù)示可求得直線(xiàn)AB的解析式,可求得D點(diǎn)坐標(biāo),則可求得AB、AD的長(zhǎng),可求得△OAB的面積與△OAD的面積之比.
試題解析:(1)如圖1,連接CQ,過(guò)Q作QD⊥PC于點(diǎn)D,
由旋轉(zhuǎn)的性質(zhì)可得PC=PQ,且∠CPQ=60°,
∴△PCQ為等邊三角形,
∵P(a,b),
∴OC=a,PC=b,
∴CD=PC=b,DQ=PQ=b,
∴Q(a+b,b);
設(shè)M(x,y),則N點(diǎn)坐標(biāo)為(x+y,y),
∵N(6,﹣),
∴,解得,
∴M(9,﹣2);
(2)①∵A是函數(shù)y=x圖象上異于原點(diǎn)O的任意一點(diǎn),
∴可取A(2,),
∴2+×=,×=,
∴B(,),
設(shè)直線(xiàn)OB的函數(shù)表達(dá)式為y=kx,則k=,解得k=,
∴直線(xiàn)OB的函數(shù)表達(dá)式為y=x;
②設(shè)直線(xiàn)AB解析式為y=k′x+b,
把A、B坐標(biāo)代入可得,解得,
∴直線(xiàn)AB解析式為y=﹣x+,
∴D(0,),且A(2,),B(,),
∴AB=,AD=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在今年的湘潭市“黨和人民滿(mǎn)意的好老師”的評(píng)選活動(dòng)中,截止到5月底,王老師獲得網(wǎng)絡(luò)點(diǎn)贊共計(jì)183000個(gè),用科學(xué)記數(shù)法表示這個(gè)數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,BD是矩形ABCD的對(duì)角線(xiàn),∠ABD=30°,AD=1.將△BCD沿射線(xiàn)BD方向平移到△B'C'D'的位置,使B'為BD中點(diǎn),連接AB',C'D,AD',BC',如圖②.
(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長(zhǎng)為 ;
(3)將四邊形ABC'D'沿它的兩條對(duì)角線(xiàn)剪開(kāi),用得到的四個(gè)三角形拼成與其面積相等的矩形,直接寫(xiě)出所有可能拼成的矩形周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形的每個(gè)內(nèi)角都等于140°,則這個(gè)多邊形的邊數(shù)是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的兩邊長(zhǎng)分別為3和6,則這個(gè)三角形的周長(zhǎng)是( )
A.15
B.12
C.12或15
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線(xiàn)交CB的延長(zhǎng)線(xiàn)于點(diǎn)M,EB的延長(zhǎng)線(xiàn)交AD的延長(zhǎng)線(xiàn)于點(diǎn)N.
求證:AM=AN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CED=35°,如圖,則∠EAB是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,飛機(jī)在一定高度上沿水平直線(xiàn)飛行,先在點(diǎn)處測(cè)得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時(shí)測(cè)得小島的俯角為.如果小島高度忽略不計(jì),求飛機(jī)飛行的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com