【題目】一般地,對于已知一次函數(shù)y1=ax+b,y2=cx+d(其中a,b,c,d為常數(shù),且ac<0),定義一個新函數(shù)y=,稱y是y1與y2的算術中項,y是x的算術中項函數(shù).
(1)如:一次函數(shù)y1=x﹣4,y2=﹣x+6,y是x的算術中項函數(shù),即y=.
①自變量x的取值范圍是 ,當x= 時,y有最大值;
②根據(jù)函數(shù)研究的途徑與方法,請?zhí)顚懴卤恚⒃趫D1中描點、連線,畫出此函數(shù)的大致圖象;
x | 8 | 9 | 10 | 12 | 13 | 14 | 16 | 17 | 18 |
y | 0 | 1.2 | 1.6 |
| 2.04 | 2 |
| 1.2 | 0 |
③請寫出一條此函數(shù)可能有的性質(zhì) ;
(2)如圖2,已知一次函數(shù)y1=x+2,y2=﹣2x+6的圖象交于點E,兩個函數(shù)分別與x軸交于點A,C,與y軸交于點B,D,y是x的算術中項函數(shù),即y=.
①判斷:點A、C、E是否在此算術中項函數(shù)的圖象上;
②在平面直角坐標系中是否存在一點,到此算術中項函數(shù)圖象上所有點的距離相等,如果存在,請求出這個點;如果不存在,請說明理由.
【答案】①8≤x≤18,13;②2,1.7,畫圖見解析;③8<x<13時,y隨x的增大而增大和13<x<18時,y隨x的增大而減。ù鸢覆晃ㄒ唬;(2)①點A、C、E在此算術中項函數(shù)的圖象上;②存在,(﹣,0)
【解析】
(1)①轉(zhuǎn)化為二次不等式求出c的取值范圍,利用二次函數(shù)的性質(zhì)求出最大值.
②把x=12,x=16代入函數(shù)解析式求函數(shù)值即可,利用描點法畫出函數(shù)圖象即可.
③觀察函數(shù)圖象,寫出函數(shù)的性質(zhì)即可.
(2)①求出A,C,E的坐標,利用待定系數(shù)法判斷即可.
②不存在,首先根據(jù)A,E,C確定這個點的坐標,然后取x=0,求出算術中項函數(shù)圖象上的點的坐標驗證即可.
解:(1)①由題意(x﹣4)(﹣x+6)≥0,
解得8≤x≤18,
∵y=,
∵﹣<0,
∴x=13時,y有最大值,最大值為.
故答案為8≤x≤18,13.
②x=12時,y==2,
x=16時,y=≈1.7
故答案為2,1.7.
函數(shù)圖象如圖所示:
③性質(zhì):8<x<13時,y隨x的增大而增大和13<x<18時,y隨x的增大而減;
故答案為:8<x<13時,y隨x的增大而增大和13<x<18時,y隨x的增大而減。ù鸢覆晃ㄒ唬;
(2)①由題意E(,),A(﹣4,0),C(3,0),
對于函數(shù)y=,
當x=時,y=,
∴點E在這個函數(shù)的圖象上,
當x=﹣4時,y=0,
∴點A在這個函數(shù)的圖象上,
當x=3時,y=0,
∴點C在這個函數(shù)的圖象上.
②不存在,由圖2可知,∵AE⊥EC,
∴∠AEC=90°,
到A,C,E距離相等的點是AC的中點T(﹣,0),這個距離是3.5,
∵算術中項函數(shù)圖象上的點P[x,],
PT=,
∴存在這樣的點(﹣,0)到此算術中項函數(shù)圖象上所有點的距離相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面內(nèi),函數(shù)y=(x>0,m是常數(shù))的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD,DC,CB.
(1)求反比例函數(shù)的解析式;
(2)若△ABD的面積為4,求點B的坐標;
(3)求證:DCAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個工程隊負責完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.
(1)求甲、乙兩工程隊每天各完成多少米?
(2)如果甲工程隊每天需工程費7000元,乙工程隊每天需工程費5000元,若甲隊先單獨工作若干天,再由甲乙兩工程隊合作完成剩余的任務,支付工程隊總費用不超過79000元,則兩工程隊最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“天空之城”摩天輪,位于寧波市杭州灣新區(qū)歡樂世界.摩天輪高約126米(最高點到地面的距離).如圖,點O是摩天輪的圓心,AB是其垂直于地面的直徑,小明在地面C處用測角儀測得摩天輪最高點A的仰角為45°,測得圓心O的仰角為30°,求摩天輪的半徑.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示.下列結論:
①abc<0;②3a+c=0;
③當y>0時,x的取值范圍是﹣1≤x<3;
④方程ax2+bx+c﹣3=0有兩個不相等的實數(shù)根;
⑤點(﹣2,y1),(2,y2)都在拋物線上,則有y1<0<y2.
其中結論正確的個數(shù)是( ).
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點,點A在x軸上,點B在y軸上.設拋物線與x軸的另一個交點為點C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(不與點A、B重合),
①如圖2,若點P在直線AB上方,連接OP交AB于點D,求的最大值;
②如圖3,若點P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點E或F恰好落在y軸上,直接寫出對應的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作等腰直角三角形ADE,AD=AE,∠DAE=90.解答下列問題:
(1) 如果AB=AC,∠BAC=90.
①當點D在線段BC上時(與點B不重合),如圖乙,線段CE、BD之間的位置關系為,數(shù)量關系為.(不用證明)
②當點D在線段BC的延長線上時,如圖丙,①中的結論是否仍然成立,為什么?
(2) 如果AB≠AC,∠BAC≠90,點D在線段BC上運動.
試探究:當△ABC滿足一個什么條件時,CE⊥BD(點C、E重合除外)?畫出相應的圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為4,P 為BC上的動點,連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com