【題目】如圖,AB是⊙O的直徑,C是 的中點,CE⊥AB于E,BD交CE于點F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.

【答案】
(1)證明:延長CE交⊙O于點P,

∵CE⊥AB,

= ,

∴∠BCP=∠BDC,

∵C是 的中點,

∴CD=CB,

∴∠BDC=∠CBD,

∴∠CBD=∠BCP,

∴CF=BF


(2)解:∵AB是⊙O的直徑,

∴∠ACB=90°,

∵CD=6,AC=8,

∴BC=6,

在Rt△ABC中,AB= =10,

∴⊙O的半徑為5.


【解析】(1)首先延長CE交⊙O于點P,由垂徑定理可證得∠BCP=∠BDC,又由C是 的中點,易證得∠BDC=∠CBD,繼而可證得CF=BF;(2)由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可得∠ACB=90°,然后由勾股定理求得AB的長,繼而求得答案.
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對圓心角、弧、弦的關(guān)系的理解,了解在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C為半圓上一點,AD平分∠CAB交⊙O于點D
(1)求證:OD∥AC;
(2)若AC=8,AB=10,求AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是( )

A. ABC中,∠C=A-B,則ABC為直角三角形

B. ABC中,若∠A∶∠B∶∠C=523,則ABC為直角三角形

C. ABC中,若a=c,b=c,則ABC為直角三角形

D. ABC中,若abc=224,則ABC為直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩條平行直線上各有個點,用這個點按如下規(guī)則連接線段:

①平行線之間的點在連線段時,可以有共同的端點,但不能有其它交點;

②符合①要求的線段必須全部畫出.

展示了當時的情況,此時圖中三角形的個數(shù)為;圖展示了當時的一種情況,此時圖中三角形的個數(shù)為.試回答下列問題:

時,請在圖中畫出使三角形個數(shù)最少的圖形,此時圖中三角形的個數(shù)是________;

試猜想當有對點時,按上述規(guī)則畫出的圖形中,最少有________個三角形;

時,按上述規(guī)則畫出的圖形中,最少有________個三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從長度分別為3,5,6,9的四條線段中任取三條,能組成三角形的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個直角三角形的兩邊的長是方程x2﹣7x+12=0的兩個根,則此直角三角形的斜邊中線長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,平面直角坐標系中,△ABC的邊AB在x軸上,∠C=60°,AC交y軸于點E,AC,BC的長是方程x2﹣16x+64=0的兩個根且OA:OB=1:3,請解答下列問題:

(1)求點C的坐標;
(2)求直線EB的解析式;
(3)在x軸上是否存在點P,使△BEP為等腰三角形?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案