【題目】如圖,在△ABC中,AD是BC邊上的中線,∠BAC=150,∠CAD=120.求證:AC=2AD.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解本校七年級學生課外閱讀的喜好,隨機抽取該校七年級部分學生進行問卷調(diào)査(每人只選一種書籍).下圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“其他”所在扇形的圓心角等于 度;
(2)若該年級有600名學生,請你估計該年級喜歡“科普常識”的學生人數(shù)約是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在復習課上,wsy老師要求寫出幾個與實數(shù)有關(guān)的結(jié)論:小明同學寫了以下5個:
①任何無理數(shù)都是無限不循環(huán)小數(shù);
②有理數(shù)與數(shù)軸上的點一一對應(yīng);
③在1和3之間的無理數(shù)有且只有這5個;
④是分數(shù),它是有理數(shù);
⑤由四舍五入得到的近似數(shù)7.30表示大于或等于7.295,而小于7.305的數(shù).其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD⊥CD,BC⊥CD,E為CD的中點,連接AE,BE,BE⊥AE,延長AE交BC的延長線于點F。
證明:(1)FC=AD;
(2)AB=BC+AD。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水庫大壩的橫截面是如圖所示的四邊形ABCD,其中AB∥CD.大壩頂上有一瞭望臺PC,PC正前方有兩艘漁船M,N.觀察員在瞭望臺頂端P處觀測到漁船M的俯角α為31°,漁船N的俯角β為45°.已知MN所在直線與PC所在直線垂直,垂足為E,且PE長為30米.
(1)求兩漁船M,N之間的距離(結(jié)果精確到1米).
(2)已知壩高24米,壩長100米,背水坡AD的坡度i=1∶0.25.為提高大壩防洪能力,請施工隊將大壩的背水坡通過填筑土石方進行加固,壩底BA加寬后變?yōu)?/span>BH,加固后背水坡DH的坡度i=1∶1.75.施工隊施工10天后,為盡快完成加固任務(wù),施工隊增加了機械設(shè)備.工作效率提高到原來的2倍,結(jié)果比原計劃提前20天完成加固任務(wù),施工隊原計劃平均每天填筑土石方多少立方米?
(參考數(shù)據(jù):tan 31°≈0.60,sin 31°≈0.52)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com