如圖,△ABC中,AB+AC=6cm,BC的垂直平分線l與AC相交于點D,則△ABD的周長為   cm.
6。
∵l垂直平分BC,∴DB=DC。
∴△ABD的周長=AB+AD+BD=AB+AD+DC=AB+AC=6cm。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法:①全等圖形的面積相等;②全等圖形的周長相等;③全等的四邊形的對角線相等;④所有正方形都全等.其中正確的結(jié)論的個數(shù)是(    ).
A.1個B.2個
C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則(史稱“皮克公式”).
小明認真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點
中的兩個多邊形:

根據(jù)圖中提供的信息填表:
 
格點多邊形各邊上的格點的個數(shù)
格點邊多邊形內(nèi)部的格點個數(shù)
格點多邊形的面積
多邊形1
8
1
 
多邊形2
7
3
 




一般格點多邊形
a
b
S
則S與a、b之間的關(guān)系為S=     (用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

當三角形中一個內(nèi)角α是另一個內(nèi)角β的兩倍時,我們稱此三角形為“特征三角形”,其中α稱為“特征角”.如果一個“特征三角形”的“特征角”為1000,那么這個“特征三角形”的最小內(nèi)角的度數(shù)為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點.

(1)如圖1,當點P與點Q重合時,AE與BF的位置關(guān)系是     ,QE與QF的數(shù)量關(guān)系式     
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列每組數(shù)分別表示三根木棒的長度,將它們首尾連接后,能擺成三角形的一組是
A.1,2,6B.2,2,4C.1,2,3D.2,3,4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在Rt△ABC, ∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結(jié)AD、CF,AD與CF交于點M。

(1)求證:△ABD≌△FBC;
(2)如圖(2),已知AD=6,求四邊形AFDC的面積;
(3)在△ABC中,設(shè)BC=a,AC=b,AB=c,當∠ACB≠90°時,c2≠a2+b2。在任意△ABC中,c2=a2+b2+k。就a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結(jié)論即可)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果三角形的兩邊分別為3和5,那么連結(jié)這個三角形三邊中點所得的三角形的周長可能是
A.5. 5  B.5  C.4.5  D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB=AE,∠1=∠2,∠C=∠D.
求證:△ABC≌△AED.

查看答案和解析>>

同步練習冊答案