【題目】如圖,AE⊥AB且AE=AB,BC⊥CD且BC=CD,請按圖中所標注的數(shù)據(jù),計算圖中實線所圍成的面積S是( )
A.50B.62C.65D.68
【答案】A
【解析】
由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以證明△EFA≌△AGB,所以AF=BG,AG=EF;同理證得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的長,然后利用面積的割補法和面積公式即可求出圖形的面積.
∵如圖,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH∠EAB=∠EFA=∠BGA=90,∠EAF+∠BAG=90,∠ABG+∠BAG=90∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG△EFA≌△AGB,
∴AF=BG,AG=EF.
同理證得△BGC≌△CHD得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S= (6+4)×163×46×3=50.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y= 的圖象相交于點A(﹣2,a),并且與x軸相交于點B.
(1)求反比例函數(shù)的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將三角形ABC向右平移5個單位長度,再向上平移3個單位長度請回答下列問題:
(1)平移后的三個頂點坐標分別為:A1 ,B1 ,C1 ;
(2)畫出平移后三角形A1B1C1;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點滿足.將線段先向上平移2個單位,再向右平移1個單位后得到線段,并連接.
(1)請求出點和點的坐標;
(2)點從點出發(fā),以每秒1個單位的速度向上平移運動.設運動時間為秒,問:是否存在這樣的,使得四邊形的面積等于8?若存在,請求出的值:若不存在,請說明理由;
(3)在(2)的條件下,點從點出發(fā)的同時,點從點出發(fā),以每秒2個單位的速度向左平移運動,設射線交軸于點.設運動時間為秒,問:的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根長為2017個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上.則細線的另一端所在位置的點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,平面直角坐標系中,A1(1,1)、A2(﹣1,1)、A3(﹣1,﹣1)、A4(2,﹣1)、A5(2,2)、A6(﹣2,2)、A7(﹣2,﹣2)、A8(3,﹣2)、A9(3,3)、……、按此規(guī)律A2020的坐標為( 。
A.(506,﹣505)B.(505,﹣504)C.(﹣504,﹣504)D.(﹣505,﹣505)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電子科技公司開發(fā)一種新產(chǎn)品,公司對經(jīng)營的盈虧情況每月最后一天結(jié)算1次.在1~12月份中,公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點A為拋物線的頂點,且點A、B、C的橫坐標分別為4、10、12,點A、B的縱坐標分別為﹣16、20.
(1)試確定函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個月公司累計獲得的利潤以及10月份一個月內(nèi)所獲得的利潤;
(3)在前12個月中,哪個月該公司一個月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com