【題目】用一根長為24 cm的鐵絲圍成一個長與寬的比是2∶1的長方形,則長方形的面積是( ).
A. 32 cm2 B. 36 cm2 C. 144 cm2 D. 以上都不對
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元.2016年投入教育經(jīng)費8640萬元.假設(shè)該縣這兩年投入教育經(jīng)費的年平均增長率相同.
(1)求這兩年該縣投入教育經(jīng)費的年平均增長率;
(2)若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△A1B1C1是由△ABC經(jīng)過平移得到的,其中,A、B、C三點的對應(yīng)點分別是A1、B1、C1,它們在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:
△ABC | A(a,0) | B(3,0) | C(5,5) |
△A1B1C1 | A1(﹣3,2) | B1(﹣1,b) | C1(c,7) |
(1)觀察表中各對應(yīng)點坐標(biāo)的變化,并填空:a= ,b= ,c= ;
(2)在如圖的平面直角坐標(biāo)系中畫出△ABC及△A1B1C1;
(3)△A1B1C1的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,轉(zhuǎn)盤上1、2、3、4四個數(shù)字分別代表雞、猴、鼠、羊四種生肖郵票(每種郵票各兩枚,雞年郵票面值“80分”,其它郵票都是面值“1.20元”),轉(zhuǎn)動轉(zhuǎn)盤后,指針每落在某個數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動轉(zhuǎn)盤一次,獲得猴年郵票的概率是 ;
(2)任意轉(zhuǎn)動轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點A順時針旋轉(zhuǎn)到Rt△ADE的位置,點E在斜邊AB上,連結(jié)BD,過點D作DF⊥AC于點F.
(1)如圖1,若點F與點A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,①如圖2,當(dāng)點F在線段CA的延長線上時,判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)點F在線段CA上時,設(shè)BE=x,請用含x的代數(shù)式表示線段AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,直線AB∥CD,E是AB與AD之間的一點,連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
證明過程如下:
證明:過點E作EF∥AB,
∵AB∥DC,EF∥AB(輔助線的作法),
∴EF∥DC
∴∠C=∠CEF.
∵EF∥AB,∴∠B=∠BEF
∴∠B+∠C=∠CEF+∠BEF
即∠B+∠C=∠BEC.
(2)如果點E運動到圖②所示的位置,其他條件不變,∠B,∠C,∠BEC又有什么關(guān)系?并證明你的結(jié)論;
(3)如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(寫出結(jié)論,不用寫計算過程)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知:AB∥CD,點E,F分別在AB,CD上,且OE⊥OF.
(1)求證:∠1+∠2=90°;
(2)如圖2,分別在OE,CD上取點G,H,使FO平分∠CFG,EO平分∠AEH,求證:FG∥EH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是隨機事件的是( )
A. 畫一個三角形,其內(nèi)角和是180°
B. 任意畫一個四邊形,其周長與對角線的和相等
C. 任取一個實數(shù),與其相反數(shù)之和為0
D. 外觀相同的10件同種產(chǎn)品中有2件是不合格產(chǎn)品,現(xiàn)從中抽取1件即為合格品
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com