【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的是_____(填序號).
【答案】①④
【解析】
利用交點式寫出拋物線解析式為y=ax2﹣2ax﹣3a,配成頂點式得y=a(x﹣1)2﹣4a,則可對①進行判斷;計算x=4時,y=a51=5a,則根據(jù)二次函數(shù)的性質(zhì)可對②進行判斷;利用對稱性和二次函數(shù)的性質(zhì)可對③進行判斷;由于b=﹣2a,c=﹣3a,則方程cx2+bx+a=0化為﹣3ax2﹣2ax+a=0,然后解方程可對④進行判斷.
解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0),
∴拋物線解析式為y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∵y=a(x﹣1)2﹣4a,
∴當x=1時,二次函數(shù)有最小值﹣4a,所以①正確;
當x=4時,y=a51=5a,
∴當﹣1≤x2≤4,則﹣4a≤y2≤5a,所以②錯誤;
∵點C(4,5a)關(guān)于直線x=1的對稱點為(﹣2,5a),
∴當y2>y1,則x2>4或x<﹣2,所以③錯誤;
∵b=﹣2a,c=﹣3a,
∴方程cx2+bx+a=0化為﹣3ax2﹣2ax+a=0,
整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正確.
故答案為①④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線y=交于點A(1,4),點B(3,m).
(1)求k1與k2的值;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=,CF=2,求DF和BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的上方作等邊三角形ADE,連接BE,CE.
(1)求證:△ABE≌△DCE;
(2)連接AC,設(shè)AC與BE交于點F,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點A作⊙O的切線并在其上取一點C,連接OC交⊙O于點D,BD的延長線交AC于E,連接AD,
(1)求證:CD2=CEAC;
(2)若AB=4,AC=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線(k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+x+2與x軸交于點A(4,0)與y軸交于點B.點M在線段AB上,其橫坐標為m,PM∥y軸,與拋物線交點為點P,PQ∥x軸,與拋物線交點為點Q
(1)求a的值、并寫出此拋物線頂點的坐標;
(2)求m為何值時,△PMQ為等腰直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com