【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB//CD,OB=6cm,OC=8cm,
求:(1)∠BOC的度數(shù);
(2)BE+CG的長;
(3)⊙O的半徑。
【答案】(1)90°(2)10cm(3)4.8
【解析】試題分析:(1)連接OF,根據(jù)切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;再根據(jù)平行線性質得到∠BOC為直角;
(2)進而由切線長定理即可得到BE+CG的長;
(3)由勾股定理可求得BC的長,最后由三角形面積公式即可求得OF的長.
試題解析:(1)連接OF;根據(jù)切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°;
(2)∵OB=6cm,OC=8cm,
∴BC=10cm,
∴BE+CG=BC=10cm.
(3)OF=4.8
科目:初中數(shù)學 來源: 題型:
【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.
(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;
(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2,交x軸于A2;將C2繞A2旋轉180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D作勻速運動,那么△ABP的面積y與點P運動的路程x之間的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉運甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內兩數(shù)和等于12,則為平局;若指針所指區(qū)域內兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com