【題目】已知a是最大的負整數(shù),b是多項式2m2n﹣m3n2﹣m﹣2的次數(shù),c是單項式﹣2xy2的系數(shù),且a、b、c分別是點A、B、C在數(shù)軸上對應(yīng)的數(shù).
(1)求a、b、c的值,并在數(shù)軸上標出點A、B、C.
(2)若動點P、Q同時從A、B出發(fā)沿數(shù)軸負方向運動,點P的速度是每秒 個單位長度,點Q的速度是每秒2個單位長度,求運動幾秒后,點Q可以追上點P?
(3)在數(shù)軸上找一點M,使點M到A、B、C三點的距離之和等于10,請直接寫出所有點M對應(yīng)的數(shù).(不必說明理由).
【答案】
(1)解:∵a是最大的負整數(shù),
∴a=﹣1,
∵b是多項式2m2n﹣m3n2﹣m﹣2的次數(shù),
∴b=3+2=5,
∵c是單項式﹣2xy2的系數(shù),
∴c=﹣2,
如圖所示:
(2)解:∵動點P、Q同時從A、B出發(fā)沿數(shù)軸負方向運動,點P的速度是每秒 個單位長度,點Q的速度是每秒2個單位長度,
∴AB=6,兩點速度差為:2﹣ ,
∴ =4,
答:運動4秒后,點Q可以追上點P
(3)解:存在點M,使P到A、B、C的距離和等于10,
M對應(yīng)的數(shù)是2或者
【解析】(1)理解多項式和單項式的相關(guān)概念,能夠正確畫出數(shù)軸,正確在數(shù)軸上找到所對應(yīng)的點;(2)根據(jù)數(shù)軸上兩點間的距離的求法進行求解;(3)注意數(shù)軸上兩點間的距離公式:兩點所對應(yīng)的數(shù)的差的絕對值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)綜合實踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:
(1)本次調(diào)查人數(shù)共 人,使用過共享單車的有 人;
(2)請將條形統(tǒng)計圖補充完整;
(3)如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片剪去四個大小形狀一樣的小正方形,然后將其中一個小正方形再按同樣的方法剪成四個小正方形,再將其中一個小正方形剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去.
(1)填表:
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 |
正方形個數(shù) | 4 | 7 | 10 | 13 |
(2)如果剪了100次,共剪出多少個小正方形?
(3)如果剪n次,共剪出多少個小正方形?
(4)如果要剪出100個正方形,那么需要剪多少次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式 =1﹣ , = ﹣ , = ﹣ ,將以這三個等式兩邊分別相加得: + + =1﹣ + ﹣ + ﹣ =1﹣ = .
(1)猜想并寫出: = .
(2)直接寫出下列各式的計算結(jié)果: + + +…+ = .
(3)探究并計算: + + +…+ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,三邊分別為a、b、c,其中a=4,b、c恰好是方程x2﹣(2k+1)x+5(k﹣ )=0的兩個實數(shù)根,則△ABC的周長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,且CQ=PA,連接PQ交AC于點D,則DE的長為( 。
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知點A(m,2)與點B(3,n)關(guān)于y軸對稱,則(m+n)2017的值為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com