【題目】如圖,已知ABC中,∠ACB=90°,AC=BC=2,將直角邊ACA點(diǎn)逆時(shí)針旋轉(zhuǎn)至AC,連接BC′,EBC的中點(diǎn),連接CE,CE的最大值為( ).

A. B. C. D.

【答案】B

【解析】

AB的中點(diǎn)M,連接CM,EM,當(dāng)CECM+EM時(shí),CE的值最大,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AC′=AC=2,由三角形的中位線(xiàn)的性質(zhì)得到EMAC′=1,根據(jù)勾股定理得到AB=2,即可得到結(jié)論

AB的中點(diǎn)M連接CM,EM∴當(dāng)CECM+EM時(shí),CE的值最大

∵將直角邊ACA點(diǎn)逆時(shí)針旋轉(zhuǎn)至AC′,∴AC′=AC=2.

EBC′的中點(diǎn),∴EMAC′=1.

∵∠ACB=90°,ACBC=2,∴AB=2,∴CMAB,∴CECM+EM

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng)為15寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為24m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度a10m),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式;

2)如果要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?

3)能?chē)擅娣e比45 m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說(shuō)明圍法;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB是直線(xiàn)y=4x+2的一部分,點(diǎn)A是直線(xiàn)與y軸的交點(diǎn),點(diǎn)B的縱坐標(biāo)為6,曲線(xiàn)BC是雙曲線(xiàn)y=的一部分,點(diǎn)C的橫坐標(biāo)為6,由點(diǎn)C開(kāi)始不斷重復(fù)“A﹣B﹣C”的過(guò)程,形成一組波浪線(xiàn).點(diǎn)P(2017,m)與Q(2020,n)均在該波浪線(xiàn)上,分別過(guò)P、Q兩點(diǎn)向x軸作垂線(xiàn)段,垂足為點(diǎn)D和E,則四邊形PDEQ的面積是( 。

A. 10 B. C. D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線(xiàn)y=ax2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(0,3)、B(1,0),其對(duì)稱(chēng)軸為直線(xiàn)l:x=2,過(guò)點(diǎn)AACx軸交拋物線(xiàn)于點(diǎn)C,AOB的平分線(xiàn)交線(xiàn)段AC于點(diǎn)E,點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線(xiàn)的解析式;

(2)若動(dòng)點(diǎn)P在直線(xiàn)OE下方的拋物線(xiàn)上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線(xiàn)的對(duì)稱(chēng)軸l上的一點(diǎn),在拋物線(xiàn)上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=4,BC=12,點(diǎn)EBC的中點(diǎn).點(diǎn)P、Q分別是邊AD、BC上的兩點(diǎn),其中點(diǎn)P以每秒個(gè)1單位長(zhǎng)度的速度從點(diǎn)A運(yùn)動(dòng)到點(diǎn)D后再返回點(diǎn)A,同時(shí)點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)C出發(fā)向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間t_____秒時(shí),以點(diǎn)A、P,Q,E為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,,.點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng),同時(shí)點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,

求幾秒后,的面積等于

求幾秒后,的長(zhǎng)度等于?

運(yùn)動(dòng)過(guò)程中,的面積能否等于?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn) 軸負(fù)半軸上,頂點(diǎn)軸正半軸上,頂點(diǎn) 在第一象限,線(xiàn)段 , 的長(zhǎng)是一元二次方程 的兩根,

(1)直接寫(xiě)出點(diǎn)的坐標(biāo) 點(diǎn) C 的坐標(biāo) ;

(2)若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),求 的值;

(3)如圖過(guò)點(diǎn) 軸于點(diǎn) 軸上是否存在點(diǎn) ,使以, 為頂點(diǎn)的三角形與以為頂點(diǎn)的三角形相似?若存在,直接寫(xiě)出滿(mǎn)足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;

2)畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2;

3)點(diǎn)C1的坐標(biāo)是 ;點(diǎn)C2的坐標(biāo)是 ;

4)試判斷:是否關(guān)于x軸對(duì)稱(chēng)?(只需寫(xiě)出判斷結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案