【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).
【答案】(1)兩建筑物底部之間水平距離BD的長度為60米;
(2)建筑物CD的高度為(60﹣20)米.
【解析】試題分析:
(1)由已知可判斷△ABD是等腰直角三角形;
(2)過點A作DC延長線的垂線,垂足為點F,則在Rt△AFC,求出FC的長,再求CD的長.
試題解析:
(1)根據(jù)題意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60,
∴兩建筑物底部之間水平距離BD的長度為60米;
(2)延長AE、DC交于點F,
根據(jù)題意得四邊形ABDF為正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=60×=20,
又∵FD=60,
∴CD=60﹣20,
∴建筑物CD的高度為(60﹣20)米.
科目:初中數(shù)學 來源: 題型:
【題目】(1)填空:
(a-b)(a+b)=________;
(a-b)(a2+ab+b2)=________;
(a-b)(a3+a2b+ab2+b3)=________;
(2)猜想:
(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)=________(其中n為正整數(shù),且n≥2);
(3)利用(2)猜想的結(jié)論計算:
①29+28+27+…+22+2+1;
②210-29+28-…-23+22-2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)如圖,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.試說明CD⊥AB.
解:∵DG⊥BC,AC⊥BC(已知),
∴∠DGB=∠ACB=90°(垂直定義).
∴DG∥AC(__________________).
∴∠2=∠________(兩直線平行,內(nèi)錯角相等).
∵∠1=∠2(已知),
∴∠1=∠________(等量代換).
∴EF∥CD(__________________).
∴∠AEF=∠________ (__________________).
∵EF⊥AB(已知).
∴∠AEF=90°(__________________).
∴∠ADC=90°(__________________).
∴CD⊥AB(__________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市七天的空氣質(zhì)量指數(shù)分別是28,45,28,45,28,30,53,這組數(shù)據(jù)的眾數(shù)是( )
A. 28 B. 30 C. 45 D. 53
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列長度的三根木棒首尾相接,不能做成三角形框架的是( 。
A. 5、7、3 B. 7、13、10 C. 5、7、2 D. 5、10、6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.
優(yōu)惠 條件 | 一次性購物不超過200元 | 一次性購物超過200元,但不超過500元 | 一次性購物超過500元 |
優(yōu)惠 辦法 | 沒有優(yōu)惠 | 全部按九折優(yōu)惠 | 其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠 |
小欣媽媽兩次購物分別用了134元和490元.
(1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?
(2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】十一黃金周期間,泗縣運河人家風景區(qū)門票價格為:成人票每張80元,學生票每張40元,泗縣某中學七年級有x名學生和y名老師;八年級學生人數(shù)是七年級學生人數(shù)的倍,八年級老師人數(shù)是七年級老師人數(shù)的倍;若他們一起去風景區(qū).
(1)兩個年級在該景點的門票費用分別為:七年級 元;八年級 元;(用含x,y的代數(shù)式表示)
(2)若他們一起去風景區(qū),則門票費用共需多少元?(用含x,y的代數(shù)式表示)若x=200,y=10,求兩個年級門票費用的總和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com