【題目】為推進我市生態(tài)文明建設,某校在美化校園活動中,設計小組想借助如圖所示的直角墻角(兩邊足夠長),用30m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為216m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和8m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
【答案】(1)x1=12,x2=18;(2)x=13時,S取得最大值,最大值為221.
【解析】
(1)根據(jù)AB=xm,就可以得出BC=30﹣x,由矩形的面積公式就可以得出關于x的方程,解之可得;
(2)根據(jù)題意建立不等式組求出結(jié)論,根據(jù)取值范圍由二次函數(shù)的性質(zhì)就可以得出結(jié)論.
解:(1)根據(jù)題意知AB=xm,則BC=30﹣x(m),
則x(30﹣x)=216,
整理,得:x2﹣30x+216=0,
解得:x1=12,x2=18;
(2)花園面積S=x(30﹣x)
=﹣x2+30x
=﹣(x﹣15)2+225,
由題意知,
解得:8≤x≤13,
∵a=﹣1,
∴當x<15時,S隨x的增大而增大,
∴當x=13時,S取得最大值,最大值為221.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過點A、P,點A(6,),點P的橫坐標是2.拋物線y=ax2+bx+c(a≠0)經(jīng)過坐標原點,且與x軸交于點B,頂點為P.
求:(1)反比例函數(shù)的解析式;
(2)拋物線的表達式及B點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E是BC上的一點,連接AE,過B點作BH⊥AE,垂足為點H,延長BH交CD于點F,連接AF.
(1)求證AE=BF;
(2)若正方形的邊長是5,BE=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】被歷代數(shù)學家尊為“算經(jīng)之首”的《九章算術》是中國古代算法的扛鼎之作.《九章算術》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”
譯文:“今有只雀、只燕,分別聚焦而且用衡器稱之,聚在一起的雀重,燕輕.經(jīng)一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤.問雀、燕每只各重多少斤?”
請列方程組解答上面的問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上,頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關于x的不等式ax2<kx﹣2的解集;
(2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,若二次函數(shù)的圖像與軸交于點(-1,0)、,與軸交于點(0,4),連接、,且拋物線的對稱軸為直線.
(1)求二次函數(shù)的解析式;
(2)若點是拋物線在一象限內(nèi)上方一動點,且點在對稱軸的右側(cè),連接、,是否存在點,使?若存在,求出點的坐標;若不存在,說明理由;
(3)如圖2,若點是拋物線上一動點,且滿足,請直接寫出點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某交為了開展“陽光體育運動”,計劃購買籃球和足球,已知足球的單價比籃球的單價多元.若購買個籃球和個足球需花費元.
(1)求籃球和足球的單價各是多少元;
(2)若學校購買籃球和足球共個,且購買籃球的總金額不超過購買足球的總金額,則學校最多可購買多少個籃球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com