我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(圖1),后人稱其為“趙爽弦圖”,由弦圖變化得到圖2,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3.若S1+S2+S3=12,則S2的值為
 

考點(diǎn):勾股定理的證明
專題:
分析:根據(jù)圖形的特征得出四邊形MNKT的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,從而用x,y表示出S1,S2,S3,得出答案即可.
解答:解:將四邊形MTKN的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=12,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=12,故3x+12y=12,
x+4y=4,
所以S2=x+4y=4.
故答案為:4.
點(diǎn)評(píng):此題主要考查了圖形面積關(guān)系,根據(jù)已知用x,y表示出S1,S2,S3,再利用S1+S2+S3=12求出是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

合并同類項(xiàng):5x-2(x-3)=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c滿足a+b+c=1,
1
a+b-c
+
1
b+c-a
+
1
c+a-b
=1,求abc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是( 。
A、2.4B、4C、4.8D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

蜂槽的構(gòu)造非常美麗、科學(xué),如圖是由7個(gè)形狀、大小完全相同的邊長(zhǎng)為1cm的正六邊形組成,則線段AB的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在十二點(diǎn)三十分時(shí),鐘表上的時(shí)針與分針?biāo)傻慕牵ā 。?/div>
A、直角B、鈍角C、平角D、銳角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線y=
k
x
(k≠0)過第二象限內(nèi)的點(diǎn)A,AB⊥x軸于B,OB=2,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過雙曲線上另一點(diǎn)C(4,-
3
2
).
(1)求雙曲線的解析式和直線AC的解析式.
(2)求△AOC的面積.
(3)根據(jù)圖象直接寫出
k
x
>ax+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P、Q是數(shù)軸上的兩個(gè)動(dòng)點(diǎn),且P、Q兩點(diǎn)的速度比是1:3.(速度單位:?jiǎn)挝婚L(zhǎng)度/秒)

(1)動(dòng)點(diǎn)P從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),4秒時(shí),兩點(diǎn)相距16個(gè)單位長(zhǎng)度.求兩個(gè)動(dòng)點(diǎn)的速度,并在數(shù)軸上標(biāo)出P、Q兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)4秒時(shí)的位置.
(2)如果P、Q兩點(diǎn)從(1)中4秒時(shí)的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),那么再經(jīng)過幾秒,點(diǎn)P、Q到原點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,拋物線C1:y=-x2+2x+3的頂點(diǎn)為A,與x軸交于兩點(diǎn).
(1)求A.B.C三點(diǎn)的坐標(biāo).
(2)在坐標(biāo)平面內(nèi)存在點(diǎn)D,使四邊形ABCD為平行四邊形,求過A、C、D的拋物線的表達(dá)式.
(3)拋物線C2與拋物線C1是否成中心對(duì)稱?若對(duì)稱,請(qǐng)直接寫出對(duì)稱中心;若不對(duì)稱,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案