【題目】請僅用無刻度的直尺,根據(jù)下列條件分別在圖(1),圖(2),(3)中作出△ABC的邊AB上的高CD.
(1)如圖(1),以銳角三角形ABC的邊AB為直徑的圓,與邊BC、AC分別交于點E、F;
(2)如圖(2),以等腰三角形ABC的底邊AB為直徑的圓,頂點C在圓內(nèi);
(3)如圖(3),以鈍角三角形ABC的一短邊AB為直徑的圓,與最長的邊AC相交于點E.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=AC,AC交⊙O于點E,BC交⊙O于點D,F是CE的中點,連接DF.則下列結(jié)論錯誤的是
A.∠A=∠ABEB.
C.BD=DCD.DF是⊙O的切線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△EDF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當(dāng)點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;
(3)在(2)的條件下,BP=2,CQ=9,則BC的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4與坐標(biāo)軸交于A,B兩點,OC⊥AB于點C,P是線段OC上的一個動點,連接AP,將線段AP繞點A逆時針旋轉(zhuǎn)45°,得到線段AP',連接CP',則線段CP'的最小值為( )
A.B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(1,0),OC=3OB,
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AD=nAB,點M,P分別在邊AB,AD上(均不與端點重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.
(問題發(fā)現(xiàn))
(1)如圖(2),當(dāng)n=1時,BM與PD的數(shù)量關(guān)系為 ,CN與PD的數(shù)量關(guān)系為 .
(類比探究)
(2)如圖(3),當(dāng)n=2時,矩形AMNP繞點A順時針旋轉(zhuǎn),連接PD,則CN與PD之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請就圖(3)給出證明;若變化,請寫出數(shù)量關(guān)系,并就圖(3)說明理由.
(拓展延伸)
(3)在(2)的條件下,已知AD=4,AP=2,當(dāng)矩形AMVP旋轉(zhuǎn)至C,N,M三點共線時,請直接寫出線段CN的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,蘭蘭站在河岸上的G點,看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸邊的距離CA的長.(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是☉的直徑,為☉上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,于兩點,過點的切線交射線于點.
(1)求證:.
(2)當(dāng)是的中點時,
①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點,點A的橫坐標(biāo)是2,點B的縱坐標(biāo)是-2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com