【題目】如圖1,在表盤上12:00時,時針、分針都指向數(shù)字12,我們將這一位置稱為“標(biāo)準(zhǔn)位置”(圖中).小文同學(xué)為研究12點分()時,時針與分針的指針位置,將時針記為,分針記為.如:12:30時,時針、分針的位置如圖2所示,試解決下列問題:
(1)分針每分鐘轉(zhuǎn)動 °;時針每分鐘轉(zhuǎn)動 °;
(2)當(dāng)與在同一直線上時,求的值;
(3)當(dāng)、、兩兩所夾的三個角、、中有兩個角相等時,試求出所有符合條件的的值.(本小題中所有角的度數(shù)均不超過180°)
【答案】(1)6,0.5;(2)的值為;(3)的值為或
【解析】
(1)由題意根據(jù)分針每60分鐘轉(zhuǎn)動一圈,時針每12小時轉(zhuǎn)動一圈進(jìn)行分析計算;
(2)由題意與在同一直線上即與所圍成的角為180°,據(jù)此進(jìn)行分析計算;
(3)根據(jù)題意分當(dāng)時以及當(dāng)時兩種情況進(jìn)行分析求解.
解:(1)由題意得分針每分鐘轉(zhuǎn)動:;
時針每分鐘轉(zhuǎn)動:.
故答案為:6,0.5.
(2)當(dāng)與在同一直線上時,
時針轉(zhuǎn)了度,即
分針轉(zhuǎn)了度,即
∴
解得,
∴的值為.
(3)①當(dāng)時,
∵
∴
∴;
②當(dāng)時,
∵
∴
∴;
∴綜上所述,符合條件的的值為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,作射線,再分別作上和的平分線、.
(1) 如圖①,當(dāng)時,求的度數(shù);
(2) 如圖②,當(dāng)射線在內(nèi)繞點旋轉(zhuǎn)時,的大小是否發(fā)生變化,說明理由.
(3) 當(dāng)射線在外繞點旋轉(zhuǎn)且為鈍角時,畫出圖形,請直接寫出相應(yīng)的的度數(shù)(不必寫出過程) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=2x+1.
(1)求已知直線與x軸、y軸的交點A、B的坐標(biāo);
(2)若直線y=kx+b與已知直線關(guān)于y軸對稱,求k與b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在“元旦”期間對顧客實行優(yōu)惠,規(guī)定一次性購物優(yōu)惠辦法:
少于200元,不予優(yōu)惠;高于200元但低于500元時,九折優(yōu)惠;消費500元或超過500元時,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折優(yōu)惠.根據(jù)優(yōu)惠條件完成下列任務(wù):
(1)王老師一次性購物600元,他實際付款多少元?
(2)若顧客在該超市一次性購物x元,當(dāng)x小于500但不小于200時,他實際付款0.9x,當(dāng)x大于或等于500元時,他實際付款多少元?(用含x的代數(shù)式表示)
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為a元(200<a<300),用含a的式子表示王老師兩次購物實際付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點P為等值點.例如點
(1,1),(-2,-2),(,),…,都是等值點.已知二次函數(shù)的
圖象上有且只有一個等值點 ,且當(dāng)m≤x≤3時,函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD折疊,使頂點D恰好落在AB邊上的點M處,折痕為AN,有以下四個結(jié)論①MN∥BC;②MN=AM;③四邊形MNCB是矩形;④四邊形MADN是菱形,以上結(jié)論中,你認(rèn)為正確的有_____________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個相等的小正方形,折成一個無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)中,,將沿翻折至,連結(jié).
結(jié)論1:與重疊部分的圖形是等腰三角形;
結(jié)論2:.
試證明以上結(jié)論.
(應(yīng)用與探究)
在中,已知,,將沿翻折至,連結(jié).若以、、、為頂點的四邊形是正方形,求的長.(要求畫出圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形、、、…按如圖所示的方式放置.點、、、…和點、、、…分別在直線和軸上,則點的坐標(biāo)是__________.(為正整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com