【題目】如圖,矩形ABCD中,∠ABC=90,AB=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在線段AC上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),在BC邊上以每秒4cm的速度向點(diǎn)C勻速運(yùn)動(dòng),動(dòng)點(diǎn)E從點(diǎn)D出發(fā),在DA邊上以每秒4cm的速度向點(diǎn)A勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2).
(1)若△CDE與△ADC相似,求t的值.
(2)連接AQ,BP,CE,若BP⊥CE,求t的值;
(3)當(dāng)PQ長度取得最小值時(shí),求t的值.
【答案】(1);(2);(3).
【解析】
試題(1)由題意可得CD2=DEDA,即36=4t×8,解方程即可.
(2)如圖1中,作PM⊥BC于M.由△PMB∽△QBA,得,由CP=5t,CM=4t,PM=3t,可得方程,解方程即可.
(3)根據(jù)PQ=,利用二次函數(shù)的性質(zhì)即可解決問題.
試題解析:(1)∵0<t<2,
∴點(diǎn)E與點(diǎn)A不重合,
∵△CDE與△ADC相似,
∴∠DCE=∠DAC,
∴,
CD2=DEDA,即36=4t×8,
解得t=s.
(2)如圖1,
∵DE=BQ=4t,AD=BC,AD∥BC
∴AE=CQ,AE∥CQ,
∴四邊形AECQ為平行四邊形,
∴CE∥AQ,過點(diǎn)P做PM⊥CB于點(diǎn)M,
∵BP⊥CE,CE∥AQ,
∴BP⊥AQ,
∴∠ABP+∠PBM=90°,∠BAQ+∠PBA=90°,
∴∠BAQ=∠PBM,∵∠ABQ=∠PMB=90°.
∴△PMB∽△QBA,
∴,
∵CP=5t,CM=4t,PM=3t,
∴,
所以t=s.
(3)如圖2,
在Rt△PMQ中,PQ=,
所以當(dāng)t=-s時(shí),PQ可以取得最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,分別以,為邊向外作等邊和等邊,與交于點(diǎn),則的度數(shù)為:____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,F是弧AD上的一點(diǎn),AF,CD的延長線相交于點(diǎn)G.
(1)若⊙O的半徑為3,且∠DFC=45°,求弦CD的長.
(2)求證:∠AFC=∠DFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校組織七年級(jí)800名學(xué)生參加詩詞大賽,為了解學(xué)生整體的詩詞積累情況,隨機(jī)抽取部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì)分析,請(qǐng)根據(jù)尚未完成的列圖表,解答問題:
組別 | 分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
一 | 50.5~60.5 | 16 | 0.08 |
二 | 60.5~70.5 | 40 | 0.20 |
三 | 70.5~80.5 | 50 | 0.25 |
四 | 80.5~90.5 | m | 0.35 |
五 | 90.5~100.5 | 24 | n |
(1)本次抽樣中,表中m=____,n=____,樣本成績的中位數(shù)落在第____組內(nèi).
(2)補(bǔ)全頻數(shù)分布直方圖.
(3)若規(guī)定成績超過80分為優(yōu)秀,請(qǐng)估計(jì)該校七年級(jí)學(xué)生中詩詞積累成績?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90,AB=3,BC=4,CD=10,DA=,則四邊形ABCD的面積為=____________,BD的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A在x軸正半軸上,頂點(diǎn)C在y軸正半軸上,點(diǎn)B的坐標(biāo)為(4,m)(5≤m≤7),反比例函數(shù)y=(x>0)的圖象交邊AB于點(diǎn)D.
(1)用m的代數(shù)式表示BD的長;
(2)設(shè)點(diǎn)P在該函數(shù)圖象上,且它的橫坐標(biāo)為m,連結(jié)PB,PD
①記矩形OABC面積與△PBD面積之差為S,求當(dāng)m為何值時(shí),S取到最大值;
②將點(diǎn)D繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,當(dāng)點(diǎn)E恰好落在x軸上時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一把折疊椅子,如圖2是椅子完全打開支穩(wěn)后的側(cè)面示意圖,表示地面所在的直線,其中和表示兩根較粗的鋼管,表示座板平面,,交于點(diǎn)F,且,長,,長24cm,長24cm,
(1)求座板的長;
(2)求此時(shí)椅子的最大高度(即點(diǎn)D到直線的距離).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對(duì)籃球、羽毛球、乒乓球、踢毽子、跳繩等5項(xiàng)體育活動(dòng)的喜歡程度,某校隨機(jī)抽查部分學(xué)生,對(duì)他們最喜歡的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問卷調(diào)查,并將統(tǒng)計(jì)數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)解答下列問題:
(1)m= %,這次共抽取了 名學(xué)生進(jìn)行調(diào)查;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校有800名學(xué)生,則該校約有多少名學(xué)生喜愛打籃球?
(3)學(xué)校準(zhǔn)備從喜歡跳繩活動(dòng)的4人(二男二女)中隨機(jī)選取2人進(jìn)行體能測(cè)試,求抽到一男一女學(xué)生的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com