已知:如圖所示,△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF.求證:CF=EB.

【答案】分析:根據(jù)角平分線的性質(zhì)“角平分線上的點到角的兩邊的距離相等”,可得點D到AB的距離=點D到AC的距離即DE=CD,再根據(jù)HL證明Rt△CDF≌Rt△EBD,從而得出CF=EB.
解答:證明:∵AD是∠BAC的平分線,DE⊥AB于E,DC⊥AC于C,
∴DE=DC.
又∵BD=DF,
∴Rt△CDF≌Rt△EDB(HL),
∴CF=EB.
點評:本題主要考查角平分線的性質(zhì),全等三角形的判定與性質(zhì).求得CD=DE是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、已知:如圖所示,直線a,b都與直線c相交,給出下列條件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖所示,Rt△ABC的周長為4+2
3
,斜邊AB的長為2
3
,則Rt△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖所示,四邊形ABCD是矩形,對角線AC,BD相交于點O,CE∥DB,交AB的延長線于點E,AC與CE相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖所示,在△ABC中,AB=AC,E在CA延長線上,AE=AF,AD是高,試判斷EF與BC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=
kx
的圖象交于點A(3,2).
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達式;
(2)M(m,n)是反比例函數(shù)圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當(dāng)四邊形OADM的面積為6時,求M點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案