精英家教網(wǎng)已知:如圖,在△ABC中,AD是高,BC=9,AD=8,sinB=
45
,求:
(1)線段DC的長(zhǎng);
(2)tan∠DAC的值.
分析:(1)已知AD的長(zhǎng)及sinB,可求得tanB=
AD
BD
,由可求出BD的長(zhǎng),繼而可求得CD的長(zhǎng);
(2)由(1)求得的CD,直接利用利用三角函數(shù),求出tan∠DAC的值.
解答:解:(1)∵AD是BC上的高
∴△ADB、△ADC均為直角三角形
已知BC=9,AD=8,sinB=
4
5

∴tanB=
4
3

∵tanB=
AD
BD
=
4
3

∴BD=6
∴CD=3;

(2)∵AD=8,BD=3,
∴tan∠DAC=
CD
AD
=
3
8
點(diǎn)評(píng):本題考查了解直角三角形,關(guān)鍵掌握直角三角形中角的三角函數(shù)值的轉(zhuǎn)換,更要熟練掌握好邊角之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案