已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D.

(1)若折疊后使點B與點O重合,則點C的坐標為______;若折疊后使點B與點A重合,則點C的坐標為______;
(2)若折疊后點B落在邊OA上的點為B′,設OB′=x,OC=y,試寫出y關于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折痕經過點O,請求出點B落在x軸上的點B′的坐標;
(4)若折疊后點B落在邊OA上的點為B′,且使DB′⊥OA,求此時點C的坐標.
(1)如圖(1),∵OB=4,延CD折疊后使點B與點O重合,
∴OC=BC=
1
2
OB=2,
∴C的坐標是(0,2),
如圖(2)連接AC,
∵OB=4,延CD折疊后使點B與點A重合,
∴BC=AC,
設OC=a,則AC=BC=4-a,在Rt△ACO中,由勾股定理得:OC2+OA2=AC2,
a2+22=(4-a)2,
解得:a=
3
2
,
即C(0,
3
2
),
故答案為:(0,2),(0,
3
2
).
(2)如圖(3)連接B′C,
∵延CD折疊后使點B與點B′重合,
∴BC=B′C=4-y,
在Rt△B′OC中,由勾股定理得:OC2+OB′2=B′C2,
y2+x2=(4-y)2,
即y=-
1
8
x2+2,y的取值范圍是
3
2
≤y≤2.
(3)如圖(4)
∵若折痕經過點O(C和O重合),點B落在x軸上的點B′,
∴OB=OB′=4,
即B′的坐標是(4,0).
(4)如圖(5)連接B′C,
設OB′=x,OC=y,
∵延CD折疊B和B′重合,
∴BC=B′C,BD=B′D,
∴∠CBB′=∠CB′B,∠DBB′=∠DB′B,
∵B′D⊥OA,∠AOB=90°,
∴B′DOB,
∴∠CBB′=∠BB′D,
∴∠CBB′=∠B′BD,
∴B′CBD,
∴△OB′C△OAB,
OB′
OA
=
OC
OB
,
x
2
=
y
4
,
即y=2x,
∴OB′=x,OC=2x,BC=4-2x=B′C,
在Rt△COB′中,由勾股定理得:x2+(2x)2=(4-2x)2,
∵x為邊長,
∴x>0,
解方程得:x=4
5
-8,2x=-16+8
5
,
∴C的坐標是(0,-16+8
5
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

甲、乙兩人同時登云霧山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,若乙提速后乙的速度是甲的3倍,從甲、乙相距100米到乙追上甲時,甲、乙兩人一共攀登了______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

水庫的庫容通常是用水位的高低來預測的.下表是某市一水庫在某段水位范圍內的庫容與水位高低的相關水文資料,請根據表格提供的信息回答問題.
水位高低x(單位:米)10203040
庫容y(單位:萬立方米)3000360042004800
(1)將上表中的各對數(shù)據作為坐標(x,y),在給出的坐標系中用點表示出來:
(2)用線段將(1)中所畫的點從左到右順次連接.若用此圖象來模擬庫容y與水位高低x的函數(shù)關系.根據圖象的變化趨勢,猜想y與x間的函數(shù)關系,求出函數(shù)關系式并加以驗證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢十分嚴峻,上級要求該水庫為其承擔部分分洪任務約800萬立方米.若該水庫當前水位為65米,且最高水位不能超過79米.請根據上述信息預測:該水庫能否承擔這項任務并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小麗一家利用元旦三天駕車到某景點旅游,小汽車出發(fā)前油箱有油36L,行駛若干小時后,中途在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關系如圖所示,根據圖象回答下列問題:
(1)汽車行駛______h后加油,中途加油______L;
(2)求加油前油箱余沒油量Q與行駛時間t之間的函數(shù)關系式;
(3)如果加油站距景點200km,車速為80km/h,要到達目的地,油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,直線y=-
3
x+4
3
與x軸相交于點A,與直線y=
3
x相交于點P.
(1)求點P的坐標;
(2)請判斷△OPA的形狀并說明理由;
(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O、P、A的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B,設運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.
求:①S與t之間的函數(shù)關系式.②當t為何值時,S最大,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經過A(1,-1)和B(2,2).
(1)求出這個函數(shù)的關系式并畫出圖象;
(2)已知直線AB上一點C到y(tǒng)軸的距離為3,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線y=
1
2
x+5
與x軸,y軸分別交于A,B兩點,點M為直線AB上一個動點,點N在x軸上方的坐標平面內,若以M,N,O,B為頂點的四邊形是菱形,則N的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

通海大市場某水果批發(fā)商引進一種臺灣水果,若進貨成本是每噸0.5萬元,這種水果市場上的銷售量y(噸)與每噸的銷售價x(萬元)的一次函數(shù)圖象如圖.若銷售價為每噸2萬元,則銷售利潤為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知在直角坐標系中,A(0,2),F(xiàn)(-3,0),D為x軸上一動點,過點F作直線AD的垂線FB,交y軸于B,點C(2,
5
2
)為定點,在點D移動的過程中,如果以A,B,C,D為頂點的四邊形是梯形,則點D的坐標為______.

查看答案和解析>>

同步練習冊答案