如圖,已知半徑為1的⊙軸交于A、B兩點,經(jīng)過原點的直線MN切⊙ 于點M,圓心的坐標為(2,0).

(1)求切線MN的函數(shù)解析式;
(2)線段上是否存在一點,使得以P、O、A為頂點的三角形與相似?若存在,請求出所有符合條件的點的坐標;若不存在,請說明理由.
(3)若將⊙沿著x軸的負方向以每秒1個單位的速度移動;同時將直線MN以每秒2個單位的速度向下平移,設運動時間為t(t>0),求t為何值時,直線MN再一次與⊙相切?(本小題保留3位有效數(shù)字)
(1)
(2),
(3)0.896

試題分析:(1)過點軸,垂足為 
∵MN是切線,為切點,

中,
,
中,

∴點坐標為 (2分)
設切線MN的函數(shù)解析式為,由題意可知, 
∴切線MN的函數(shù)解析式為 (1分)
(2)存在.               
①過點軸,與交于點.可得
,∴ (2分)
②過點,垂足為,過點作,垂足為
可得
中,,∴
中,,
(2分)
∴符合條件的點坐標有, 
(3)在Rt△OCD中,OC=;在Rt△中,
 ,得.(3分)
點評:直角三角形的基本知識的運用是本題的解題關鍵,其中勾股定理及其逆定理等知識是?键c
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

已知直線與x軸交于點A,與y軸交于點B,點C(0,2)、點M(m,0),如果以MC為半徑的⊙M與直線AB相切,則經(jīng)過點A、C、M的拋物線的解析式為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知Rt△ABC,∠ABC=90º,以直角邊AB為直徑作⊙O,交斜邊AC于點D,連結BD.

(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點E,連結ED,試證明ED與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,的直徑,點、都在上,若,則(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

小英家的圓形鏡子被打碎了,她拿了如圖(網(wǎng)格中的每個小正方形邊長為1)的一塊碎片到玻璃店,配制成形狀、大小與原來一致的鏡面,則這個鏡面的半徑是(   )
A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,AD⊥DC,弦AC平分∠DAB,

(1)求證:DC是⊙O的切線;
(2)若AD=2,AC=;,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,AB是⊙O的直徑,AB=4,AC是弦,AC=,則∠AOC為
A.120°B.1300C.140°D.150°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,在x軸、y軸的正半軸上分別截取OA、OB,使OA=OB;再分別以點A、B為圓心,以大于AB長為半徑作弧,兩弧交于點C.若點C的坐標為(m﹣1,2n),則m與n的關系為( 。

A.m+2n=1        B.m﹣2n=1         C.2n﹣m=1         D.n﹣2m=1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,把⊙O1向右平移8個單位長度得⊙O2,兩圓相交于A,B,且O1A⊥O2A,則圖中陰影部分的面積是_____  ______.

查看答案和解析>>

同步練習冊答案