【題目】如圖,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于點E,AD⊥BC于點D,BE與AD相交于F.
(1)求證:BF=AC;
(2)若BF=3,求CE的長度.
【答案】(1)見解析;(2)CE=.
【解析】
(1)由三角形的內(nèi)角和定理,對頂角的性質(zhì)計算出∠1=∠2,等腰直角三角形的性質(zhì)得BD=AD,角邊角(或角角邊)證明△BDF≌△ADC,其性質(zhì)得BF=AC;(2)等腰三角形的性質(zhì)“三線合一”證明CE=AC,計算出CE的長度為.
解:如圖所示:
(1)∵AD⊥BC,BE⊥AC,
∴∠FDB=∠FEA=∠ADC=90°,
又∵∠FDB+∠1+∠BFD=180°,
∠FEA+∠2+AFE=180°,
∠BFD=∠AFE,
∴∠1=∠2,
又∠ABC=45°,
∴BD=AD,
在△BDF和△ADC中, ,
∴△BDF≌△ADC(ASA)
∴BF=AC;
(2)∵BF=3,
∴AC=3,
又∵BE⊥AC,
∴CE=AE==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③4ac﹣b2<﹣4a;④<a<;⑤b>c.其中正確結(jié)論有______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,BC為⊙O的直徑,AE為⊙O的切線,過點B作BD⊥AE于D.
(1)求證:∠DBA=∠ABC;
(2)如果BD=1,tan∠BAD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,以AO為直徑作半圓M,C為OB的中點,D在半圓M上,且CD⊥MD,延長AD交半圓O于點E,且AB=4,則圓中陰影部分的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC和∠ACB的角平分線相交于點O,DE經(jīng)過O點,且DE//BC.
⑴請指出圖中的兩個等腰三角形.
⑵請選擇⑴中的一個三角形,說明它是等腰三角形的理由.
⑶如果△ABC的周長是26,△ADE的周長是18,請求出BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個圖形有1個正三角形,第二個圖形有5個正三角形,第三個圖形有12個正三角形,…,按此規(guī)律排列下去,第六個圖形中正三角形的個數(shù)是( 。
A. 35 B. 41 C. 45 D. 51
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,對進行循環(huán)往復(fù)的軸對稱變換,若原來點A坐標(biāo)是,則經(jīng)過第2019次變換后所得的A點坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)
獎金金額 獲獎人數(shù) | 20元 | 15元 | 10元 | 5元 |
商家甲超市 | 5 | 10 | 15 | 20 |
乙超市 | 2 | 3 | 20 | 25 |
(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是 ,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是 ;
(2)請你補全統(tǒng)計圖1;
(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?
(4)圖2是甲超市的搖獎轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com