【題目】數(shù)學(xué)課上,靜靜將一幅三角板如圖擺放,點(diǎn),,三點(diǎn)共線,其中,,,且.
(1)若,.求的長(zhǎng).
(2)若,求的長(zhǎng).
【答案】(1);(2)2-.
【解析】
(1)在直角△AFB中,利用勾股定理求得AF的長(zhǎng)度;
(2)如圖,過(guò)點(diǎn)E作EG⊥AC于點(diǎn)G,構(gòu)造等腰直角△EGC.在直角△EDC中,根據(jù)勾股定理求得EC的長(zhǎng)度;然后在直角△EGC中,再次利用勾股定理求得GC的長(zhǎng)度,在直角△EGB中,求得BG的長(zhǎng)度,則BC=GC-GB.
(1)解:如圖,直角△AFB中,∠FAB=90°,AB=2,BF=4.
由勾股定理知,AF= ;
(2)解:如圖,過(guò)點(diǎn)E作EG⊥AC于點(diǎn)G,則AF∥EG.
∵∠F=30°,
∴∠BEG=30°.
∴BG=BE.
∵∠ECD=90°,∠D=45°,
∴∠DEC=∠D=45°.
∴EC=CD.
∴ED=EC.
又ED=4,
∴EC=2.
∵DE∥AC,
∴∠ECG=∠DEC=45°.
∴∠GEC=∠GCE=45°.
∴EG=CG.
∴EC=GC,即2=GC.
∴GC=2.
在直角△BGE中,由勾股定理知BG2+EG2=BE2,即BG2+22=4BG2.
∴BG= .
∴BC=GC-GB=2-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒(méi)有氣餒,總結(jié)反思后,和烏龜約定再賽一場(chǎng).圖中的函數(shù)圖象刻畫(huà)了“龜兔再次賽跑”的故事(表示時(shí)間,、表示路程),根據(jù)圖象解答下列問(wèn)題:
(1)“龜兔再次賽跑”的路程為__________米;
(2)它們兩個(gè)約定__________先出發(fā)(填“兔子”和“烏龜”),先出發(fā)__________分鐘;
(3)烏龜跑完全程用了__________分鐘,兔子跑完全程用了__________分鐘,烏龜平均速度是__________米/分,兔子平均速度是__________米/分;
(4)觀察圖象,你還能得出什么結(jié)論?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,點(diǎn)D為BC的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,試寫(xiě)出線段BE,EF,FC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決江北學(xué)校學(xué)生上學(xué)過(guò)河難的問(wèn)題,鄉(xiāng)政府決定修建一座橋,建橋過(guò)程中需測(cè)量河的寬度(即兩平行
河岸AB與MN之間的距離).在測(cè)量時(shí),選定河對(duì)岸MN上的點(diǎn)C處為橋的一端,在河岸點(diǎn)A處,測(cè)得∠CAB=30°,
沿河岸AB前行30米后到達(dá)B處,在B處測(cè)得∠CBA=60°,請(qǐng)你根據(jù)以上測(cè)量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù): ≈1.41, ≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,,,,若點(diǎn)P從點(diǎn)C出發(fā),以每秒1cm的速度沿折線C→A→B→C運(yùn)動(dòng)(回到C點(diǎn)后點(diǎn)P停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒().
(1)若點(diǎn)P點(diǎn)AB邊上,且滿足時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求出此時(shí)t的值;
(3)在運(yùn)動(dòng)過(guò)程中,當(dāng)△BCP為等腰三角形時(shí),直接寫(xiě)出所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,平行四邊形ABCD在第一象限,且AB∥x軸.直線y=-x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過(guò)程中直線被平行四邊形截得的線段長(zhǎng)度l與直線在x軸上平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為()
A.4B.C.D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com