【題目】(1)如圖1,ABCCDE均為等邊三角形,直線AD和直線BE交于點F.

①求證: AD=BE:

②求∠AFB的度數(shù).

(2)如圖2, ABCCDE均為等腰直角三角形,∠ABC= DEC=90°,直線AD和直線BE交于點F.

①求證: AD= BE:;

②若AB=BC=3, DE=EC= 2,CDE繞著點C在平面內(nèi)旋轉(zhuǎn),當(dāng)點D落在線段BC上時,在圖3中畫出圖形,并求BF的長度.

【答案】(1)①見解析;②∠AFB60°;(2)①見解析;②BF

【解析】

1)證明△ACD≌△BCESAS),即可解決問題.

(2)①根據(jù)∠ABC=∠DEC90°,ABBC,DEEC,可知∠ACB=∠DCE45°,∠ACD=∠BCE,可證△ACD∽△BCE可知,

②當(dāng)點D落在線段BC上時,證明△ACD∽△BCE.再證明△BDF∽△BEC,可得,

即可計算出.

(1)①∵△ABCCDE均為等邊三角形,

CACBCDCE,∠ACB=∠DCE60°

∴∠ACD=∠BCE

∴△ACD≌△BCESAS).

ADBE,∠CAD=∠CBF

②如圖(1)設(shè)BCAF于點G

∵∠AGC=∠BGF,∠CAD=∠CBF

∴∠BFG=∠ACG60°

即∠AFB60°

(2)①∵∠ABC=∠DEC90°,ABBCDEEC,

∴∠ACB=∠DCE45°

∴∠ACD=∠BCE

∴△ACD∽△BCE

②當(dāng)點D落在線段BC上時,

如圖所示

,

過點EEHBC于點H,

,

∵∠ACD=∠BCE45°,

∴△ACD∽△BCE

∴∠CAD=∠CBE

又∵∠ADC=∠BDF,

∴∠BFD=∠ACD45°

∴∠BFD=∠BCE45°

又∵∠DBF=∠EBC,

∴△BDF∽△BEC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,為直線上一動點(不與端點重合),以為直角邊在右側(cè)作等腰直角三角形連接

1)如圖①,當(dāng)點在線段上時,線段的數(shù)量關(guān)系為    ;

2)如圖②,當(dāng)點在線段延長線上時,線段之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明;

3)如圖③,當(dāng)點在線段反向延長線上時,且點分別在直線的兩側(cè),請直接寫出線段的數(shù)量關(guān)系為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點E是矩形ABCD的邊AD上一點,BEAD,AE8,現(xiàn)有甲乙二人同時從E點出發(fā),分別沿ECED方向前進(jìn),甲的速度是乙的倍,甲到達(dá)點目的地C點的同時乙恰巧到達(dá)終點D處.

1)求tanECD的值

2)求線段ABBC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點Px軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點Px軸的垂線l交拋物線于點Q,交直線BD于點M.

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)已知點F(0,),當(dāng)點Px軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?

(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為貧困山區(qū)捐款,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計,并繪制成統(tǒng)計圖.

50名同學(xué)捐款的眾數(shù)為______元,中位數(shù)為______元;

求這50名同學(xué)捐款的平均數(shù)_______元;

該校共有1200名學(xué)生參與捐款,請估計該校學(xué)生的捐款總錢數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于邊形,甲、乙、丙三位同學(xué)有以下三種說法:

甲:五邊形的內(nèi)角和為

乙:正六邊形每個內(nèi)角為

丙:七邊形共有對角線14

1)判斷三種說法是否正確,并對其中你認(rèn)為不對的說法用計算進(jìn)行說明

2)若邊形的對角線共35條,求該邊形的內(nèi)角和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于點兩點(點在點的右側(cè)),與軸交于點,點是拋物線上的一個動點,過軸,垂足為,交直線于點

1)直接寫出,三點的坐標(biāo);

2)若以,,為頂點的四邊形是平行四邊形,求此時點的坐標(biāo);

3)當(dāng)點位于直線下方的拋物線上時,過點于點,設(shè)點的橫坐標(biāo)為的面積為,求的函數(shù)關(guān)系式,并求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東67°方向,距離B520km,C地位于A地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求建成高鐵后從B地前往C地的路程.,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△EFG是兩塊完全重合的等邊三角形紙片,(如圖①所示)OAB(EF)的中點,△ABC不動,將△EFGO點順時針轉(zhuǎn)α﹝0°<α120°﹞角.

1)試分別說明α為多少度時,點F在△ABC外部、BC上、內(nèi)部(不證明)?

2)當(dāng)點F不在BC上時,在圖②、圖③兩種情況下(設(shè)EF或延長線與BC交于PEGCA或延長線交于Q),分別寫出OPOQ的數(shù)量關(guān)系,并將圖③情況給予說明.

查看答案和解析>>

同步練習(xí)冊答案