【題目】如圖,AB是圓O的直徑,C,D是圓O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn).則下列結(jié)論:
①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.
其中一定成立的是( )
A.①③⑤
B.②③④
C.②④⑤
D.①③④⑤
【答案】D
【解析】解:①∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,正確
②∠AOC=2∠ABC,錯(cuò)誤;
③、∵OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠DBC,
∴CB平分∠ABD,
④、∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,
∵OC∥BD,
∴∠AFO=90°,
∵點(diǎn)O為圓心,
∴AF=DF,
⑤、由④有,AF=DF,
∵點(diǎn)O為AB中點(diǎn),
∴OF是△ABD的中位線,
∴BD=2OF,
正確的有①③④⑤,
故選D.
①由直徑所對(duì)圓周角是直角進(jìn)行判斷;
②根據(jù)圓周角定理進(jìn)行判斷;
③由平行線得到∠OCB=∠DBC,再由圓的性質(zhì)得到結(jié)論判斷出∠OBC=∠DBC;
④用半徑垂直于不是直徑的弦,必平分弦;
⑤用三角形的中位線得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A,B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.在x軸上有一點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和y=x的圖象于點(diǎn)C,D.
(1)求點(diǎn)A的坐標(biāo);
(2)若OB=CD,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從A點(diǎn)出發(fā)向北偏東60°方向走了80m米到達(dá)B地,從B地他又向西走了160m到達(dá)C地.
(1)用1:4000的比例尺(即圖上1cm等于實(shí)際距離40m)畫出示意圖,并標(biāo)上字母;
(2)用刻度尺出AC的距離(精確到0.01cm),并求出C但距A點(diǎn)的實(shí)際距離(精確到1m);
(3)用量角器測(cè)出C點(diǎn)相對(duì)于點(diǎn)A的方位角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費(fèi)的價(jià)目表如下表(注:水費(fèi)按月份結(jié)算,表示立方米):
價(jià)目表 | |
每月用水量 | 單價(jià) |
不超出的部分 | 元 |
超出不超出的部分 | 元 |
超出的部分 | 元 |
注:水費(fèi)按月結(jié)算 |
例:若某戶居民月份用水,應(yīng)收水費(fèi)為(元).
請(qǐng)根據(jù)上表的內(nèi)容解答下列問題:
填空:若該戶居民月份用水,則應(yīng)收水費(fèi)________元;
若該戶居民月份用水(其中),則應(yīng)收水費(fèi)多少元?(用含的表示,并化簡(jiǎn))
若該戶居民,兩個(gè)月共用水(月份用水量超過了月份),設(shè)月份用水,求該戶居民,兩個(gè)月共交水費(fèi)多少元?(用含的表示,并化簡(jiǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠BAC=90°,BC=6,過點(diǎn)C作CD⊥BC,CD=2,連接BD,過點(diǎn)C作CE⊥BD,垂足為E,連接AE,則AE長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:
(1)請(qǐng)猜想1+3+5+7+9+…+19=_______________________;
(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;
(3)請(qǐng)用上述規(guī)律計(jì)算:51+53+55+…+2011+2013.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)M、N分別在線段DA、BA的延長(zhǎng)線上,且BD=BN=DM,連接BM、DN并延長(zhǎng)交于點(diǎn)P.
求證:∠P=90°﹣∠C;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,已知下列6個(gè)條件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.則不能使四邊形ABCD成為矩形的是( )
A. ①②③ B. ②③④ C. ②⑤⑥ D. ④⑤⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠A=60°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A1B1C,斜邊A1B1與CB相交于點(diǎn)D,且DC=AC,則旋轉(zhuǎn)角∠ACA1等于( )
A.20°
B.25°
C.30°
D.35°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com