如圖,D是射線AB上一點,過點D作DE∥AC,交∠BAC平分線于點E,過點D作DF⊥AE,垂足為F,DF交AC于點G.
(1)按要求在所給圖中將圖形補全,然后判斷四邊形ADEG的形狀,并證明你的結論;
(2)標出有向線段數(shù)學公式、數(shù)學公式數(shù)學公式,記向量數(shù)學公式、數(shù)學公式,試用數(shù)學公式表示向量數(shù)學公式

解:(1)四邊形ADEG為菱形.
證明:∵DE∥AC,
∴∠DEA=∠EAC,
∵AE平分∠BAC,
∴∠DAE=∠EAC,
∴∠DAE=∠DEA,
∴DA=DE,
∵DF⊥AE,
∴AF=EF;
在△ADF和△AGF中,∠DAE=∠EAC,AF=AF,∠DFA=∠GFA=90°,
∴△ADF≌△AGF;
∴DF=GF,
∴四邊形ADEG為平行四邊形;
∵DF⊥AE,
∴平行四邊形ADEG為菱形;

(2)∵,四邊形ADEG為菱形,
根據(jù)題意,得:,
,

分析:(1)根據(jù)同位角相等,即可得DE∥AC;在作出∠BAC平分線,在作DF⊥AE,連接各點即可;根據(jù)已知易證AD=DE,AD=AG,又由DE∥AC,即可證得平行四邊形ADEG為菱形;
(2)由菱形的性質與向量的意義,即可求得,繼而求得向量的值.
點評:此題考查了學生的基本作圖,以及菱形的判定定理和向量的知識.此題綜合性很強,解題時要注意分析與識圖.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,D是射線AB上一點,過點D作DE∥AC,交∠BAC平分線于E,過點D作DF⊥AE,垂足為F.
(1)按要求在右圖上將圖形補全;
(2)已知∠BAC=60°,AD=2,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,D是射線AB上一點,過點D作DE∥AC,交∠BAC平分線于點E,過點D作DF⊥AE,垂足為F,DF交A精英家教網(wǎng)C于點G.
(1)按要求在所給圖中將圖形補全,然后判斷四邊形ADEG的形狀,并證明你的結論;
(2)標出有向線段
AD
、
AF
、
AG
,記向量
AD
=
a
、
AF
=
b
,試用
a
,
b
表示向量
AG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,D是射線AB上一點,過點D作DE∥AC,交∠BAC平分線于E,過點D作DF⊥AE,垂足為F.
(1)按要求在右圖上將圖形補全;
(2)已知∠BAC=60°,AD=2,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年上海市寶山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)如圖,D是射線AB上一點,過點D作DE∥AC,交∠BAC平分線于點E,過點D作DF⊥AE,垂足為F,DF交AC于點G.
(1)按要求在所給圖中將圖形補全,然后判斷四邊形ADEG的形狀,并證明你的結論;
(2)標出有向線段、,記向量、,試用表示向量

查看答案和解析>>

同步練習冊答案