【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,點E在AB邊上,將紙片沿CE折疊,點B落在點F處,EF,CF分別交AD于點G,H,且EG=GH,則AE的長為( )
A. B. 1C. D. 2
【答案】B
【解析】
根據(jù)折疊的性質(zhì)得到∠F=∠B=∠A=90°,BE=EF,根據(jù)全等三角形的性質(zhì)得到FH=AE,GF=AG,得到AH=BE=EF,設(shè)AE=x,則AH=BE=EF=4-x,根據(jù)勾股定理即可得到結(jié)論.
∵將△CBE沿CE翻折至△CFE,
∴∠F=∠B=∠A=90°,BE=EF,
在△AGE與△FGH中,
,
∴△AGE≌△FGH(AAS),
∴FH=AE,GF=AG,
∴AH=BE=EF,
設(shè)AE=x,則AH=BE=EF=4-x
∴DH=x+2,CH=6-x,
∵CD2+DH2=CH2,
∴42+(2+x)2=(6-x)2,
∴x=1,
∴AE=1,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,若BC=4,AO=CO=3,BD=10,∠ACB=90°,求AD的長及四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱底面半徑為cm,高為18cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為( )
A.24cmB.30cmC.2cmD.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對角線AC上取一點E,連接BE,過B作BE的垂線交CA的延長線于F,垂足為B,將△BEF沿BF翻折得到△BGF,連接GC.若tan∠EFG=,,則GC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜每千克售價(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點在同一條線段上,圖2中的點在同一條拋物線上,且拋物線的最低點的坐標為(6,1).
(1)求出與之間滿足的函數(shù)表達式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達式;
(3)設(shè)這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合)。若四邊形OBCD是平行四邊形時,那么的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點在軸上,且.
(1)求點的坐標,并畫出;
(2)求的面積;
(3)在軸上是否存在點,使以三點為頂點的三角形的面積為10?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.
(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;
(2)求一次打開鎖的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,、分別平分四邊形的外角和,設(shè),.
(1)若,則 ;
(2)若與相交于點,且,求、所滿足的等量關(guān)系式,并說明理由;
(3)如圖②,若,試判斷、的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com