【題目】數(shù)學(xué)課上,老師提出一個(gè)問題:如圖①,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是軸正半軸上一動(dòng)點(diǎn),以為邊作等腰直角三角形,使,點(diǎn)在第一象限,設(shè)點(diǎn)的橫坐標(biāo)為,設(shè)……為,與之間的函數(shù)圖象如圖②所示.題中用“……”表示的缺失的條件應(yīng)補(bǔ)為( )
A.點(diǎn)的橫坐標(biāo)B.點(diǎn)的縱坐標(biāo)C.的周長D.的面積
【答案】B
【解析】
從圖②可以看出,當(dāng)時(shí),,此時(shí)點(diǎn)C的縱坐標(biāo)為1;△ADC≌△BOA(AAS),當(dāng)時(shí),,即可求解.
從圖②可以看出,當(dāng)時(shí),,
此時(shí)點(diǎn)C的縱坐標(biāo)為1;
當(dāng)時(shí),過點(diǎn)C作CD⊥y軸于點(diǎn)D,
∵△ABC是等腰直角三角形,
∴∠BAC=90°,AB=AC,
∵∠DAC+∠ACD=90°,∠DAC+∠OAB=180°-∠BAC=180°-90° =90°,
∴∠OAB=∠DCA,
∠ADC=∠BOA=90°,
∴△ADC≌△BOA(AAS),
∴BO=AD,OA=CD,
則OD=AD+OD=1+2=3,
即:點(diǎn)C縱坐標(biāo)為3;
∴設(shè)點(diǎn)的橫坐標(biāo)為,點(diǎn)C縱坐標(biāo)為,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐操作:如圖,在 中,∠ABC=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):
(1)作∠BCA的角平分線,交AB于點(diǎn)O;
(2)以O(shè)為圓心,OB為半徑作圓.
綜合運(yùn)用:在你所作的圖中,
(3)AC與⊙O的位置關(guān)系是(直接寫出答案);
(4)若BC=6,AB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知DE∥BC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= ( )
∵DF、BE分別平分∠ADE、∠ABC,
∴∠ADF= ( )
∠ABE= ( )
∴∠ADF=∠ABE
∴ ∥ ( )
∴∠FDE=∠DEB.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃岡市三運(yùn)會(huì)期間,武穴黃商有一種姚明牌運(yùn)動(dòng)裝每件的銷售價(jià)y(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上,該圖象從左至右,依次是線段AB、線段BC、線段CD,而這種運(yùn)動(dòng)裝每件的進(jìn)價(jià)Z(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式為Z= (1≤x≤16且x為整數(shù))
(1)寫出每件的銷售價(jià)y(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式;
(2)設(shè)每件運(yùn)動(dòng)裝銷售利潤為w,寫出w(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式;
(3)求該運(yùn)動(dòng)裝第幾周出銷時(shí),每件運(yùn)動(dòng)裝的銷售利潤最大?最大利潤為多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(3,2)、B(2,0),將這三個(gè)頂點(diǎn)的坐標(biāo)同時(shí)擴(kuò)大到原來的2倍,得到對(duì)應(yīng)點(diǎn)D、E、F.
(1)在圖中畫出△DEF;
(2)點(diǎn)E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,四邊形ABCD中,∠B=∠D=90°,AE平分∠DAB,AE//CF.
(1)說明:CF平分∠BCD;
(2)作△ADE的高DM,若AD=8,DE=6,AE=10,求DM的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買若干臺(tái)打印機(jī),現(xiàn)從兩家商場了解到同一種型號(hào)的打印機(jī)報(bào)價(jià)均為1000元,并且多買都有一定的優(yōu)惠.各商場的優(yōu)惠條件如下表所示:
商場 | 優(yōu)惠條件 |
甲商場 | 第一臺(tái)按原價(jià)收費(fèi),其余的每臺(tái)優(yōu)惠15% |
乙商場 | 每臺(tái)優(yōu)惠10% |
(1)設(shè)公司購買臺(tái)打印機(jī),選擇甲商場時(shí),所需費(fèi)用為元,選擇乙商場時(shí),所需費(fèi)用為元,請分別求出,與之間的關(guān)系式.
(2)什么情況下,兩家商場的收費(fèi)相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?
(3)現(xiàn)從甲乙兩商場一共買入10臺(tái)打印機(jī),已知甲商場的運(yùn)費(fèi)為每臺(tái)15元,乙商場的運(yùn)費(fèi)為每臺(tái)20元,設(shè)總運(yùn)費(fèi)為元,從甲商場購買臺(tái)打印機(jī),在甲商場的庫存只有4臺(tái)的情況下,怎樣購買,總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價(jià)格為元/個(gè)的粽子,根據(jù)市場預(yù)測,該品牌粽子每個(gè)售價(jià)元時(shí),每天能出售個(gè),并且售價(jià)每上漲元,其銷售量將減少個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子的售價(jià)不能超過進(jìn)價(jià)的.
(1)請你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤為元.
(2)定價(jià)為多少時(shí)每天的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com