【題目】課前預(yù)習(xí)是學(xué)習(xí)的重要環(huán)節(jié),為了了解所教班級學(xué)生完成課前預(yù)習(xí)的具體情況,某班主任對本班部分學(xué)生進行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A.優(yōu)秀,B.良好,C.一般,D.較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.
(1)本次調(diào)查的樣本容量是 ;其中A類女生有 名,D類學(xué)生有 名;
(2)將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)若從被調(diào)查的A類和D類學(xué)生中各隨機選取一位學(xué)生進行“一幫一”輔導(dǎo)學(xué)習(xí),即A類學(xué)生輔導(dǎo)D類學(xué)生,請用列表法或畫樹狀圖的方法求出所選兩位同學(xué)中恰好是一位女同學(xué)輔導(dǎo)一位男同學(xué)的概率.
【答案】(1)20、2、2;(2)25%,10%,(3)
【解析】試題分析:(1)根據(jù)B類有6+4=10人,所占的比例是50%,據(jù)此即可求得總?cè)藬?shù),再求得A類總?cè)藬?shù)可得A類女生人數(shù),由各類別人數(shù)之和為總?cè)藬?shù)可得D類人數(shù);
(2)利用(1)中求得的結(jié)果及對應(yīng)人數(shù)除以總?cè)藬?shù)即為其百分比,補全圖形即可得;
(3)利用列舉法即可表示出各種情況,然后利用概率公式即可求解.
試題解析:(1)本次調(diào)查的學(xué)生數(shù)=(6+4)÷50%=20(名),
則A類女生有:20×15%-1=2(名),D類學(xué)生有20-(3+10+5)=2(名),
故答案為:20、2、2;
(2)C類百分比為×100%=25%,D類別百分比為×100%=10%,
補全圖形如下:
(3)由題意畫樹形圖如下:
從樹形圖看出,所有可能出現(xiàn)的結(jié)果共有6種,且每種結(jié)果出現(xiàn)的可能性相等,所選一位女同學(xué)輔導(dǎo)一位男同學(xué)的結(jié)果共有2種.
所以P(一位女同學(xué)輔導(dǎo)一位男同學(xué))=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)興趣小組活動中,同學(xué)們做了一個找朋友的游戲:有六個同學(xué)A、B、C、D、E、F分別藏在六張大紙牌的后面,如圖,A、B、C、D、E、F所持的紙牌的前面分別寫有六個算式:66;63+63;(63)3;(2×62)×(3×63);(22×32)3;(64)3÷62.游戲規(guī)定:所持算式的值相等的兩個人是朋友.如果現(xiàn)在由同學(xué)A來找他的朋友,他可以找誰呢?說說你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認真閱讀下面的材料,完成有關(guān)問題.
材料:在學(xué)習(xí)絕對值時,老師教過我們絕對值的幾何含義,如表示、在數(shù)軸上對應(yīng)的兩點之間的距離;,所以表示、在數(shù)軸上對應(yīng)的兩點之間的距離;,所以表示在數(shù)軸上對應(yīng)的點到原點的距離.
一般地,點、點在數(shù)軸上分別表示有理數(shù)、,那么點、點之間的距離可表示為.
(1)點、、在數(shù)軸上分別表示有理數(shù)、、,那么點到點的距離與點到點的距離之和可表示為__________(用含絕對值的式子表示).
(2)利用數(shù)軸探究:
①滿足的的取值范圍是__________.
②滿足的的所有值是__________.
③設(shè),當的值取在不小于且不大于的范圍時,的值是不變的,而且是的最小值,這個最小值是_____.
(3)拓展:
①的最小值為__________.
②的最小值為__________.
③的最小值為__________,此時的取值范圍為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,將拋物線C1:y=x2繞點(1,0)旋轉(zhuǎn)180°后,得到拋物線C2,定義拋物線C1和C2上位于﹣2≤x≤2范圍內(nèi)的部分為圖象C3.若一次函數(shù)y=kx+k﹣1(k>0)的圖象與圖象C3有兩個交點,則k的范圍是:__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=a,P為邊BC上一動點(不與B、C重合),E是邊BC延長線上一點,連結(jié)AP,過點P作PF⊥AP交∠DCE的平分線于點F,連結(jié)AF與邊CD交于點G,連結(jié)PG.
猜想:線段PA與PF的數(shù)量關(guān)系為 .
探究:△CPG的周長在點P的運動中是否改變?若不改變求其值.
應(yīng)用:若PG∥CF,當a=時,則PB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為上的點,為上的點,,,那么,
請完成它成立的理由.
∵,
.(______)
∴(______)
∴____________,(______)
∴(______)
∵,
∴(______).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com