【題目】已知數(shù)據(jù)x1 , x2 , x3的平均數(shù)是10,則數(shù)據(jù)x1+1,x2+2,x3+3的平均數(shù)為 .
【答案】12
【解析】解:∵數(shù)x1、x2、x3的平均數(shù)為10 ∴數(shù)x1+x2+x3=3×10=30
∴x1+1、x2+2、x3+3的平均數(shù)
=(x1+1+x2+2+x3+3)÷3
=(3×10+6)÷3
=(30+6)÷3
=12.
所以答案是12.
【考點(diǎn)精析】本題主要考查了算術(shù)平均數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對(duì)應(yīng)的總份數(shù)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l平行x軸,交y軸于點(diǎn)A,第一象限內(nèi)的點(diǎn)B在l上,連結(jié)OB,動(dòng)點(diǎn)P滿足∠APQ=90°,PQ交x軸于點(diǎn)C.
(1)當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),若點(diǎn)B的坐標(biāo)是(2,1),求PA的長(zhǎng).
(2)當(dāng)動(dòng)點(diǎn)P在線段OB的延長(zhǎng)線上時(shí),若點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,求PA:PC的值.
(3)在(2)的條件下,已知AB=3,OB:BP=3:1,求四邊形AOCP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的對(duì)稱軸為直線x=,與軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,4).(1)求拋物線的解析式,結(jié)合圖象直接寫(xiě)出當(dāng)0≤x≤4時(shí)y的取值范圍;(2)已知點(diǎn)D(m,m+1)在第一象限的拋物線上,點(diǎn)D關(guān)于直線BC的對(duì)稱點(diǎn)為點(diǎn)E,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(x,y)向左平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度后與點(diǎn)B(﹣3,2)重合,則點(diǎn)A的坐標(biāo)是( )
A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過(guò)點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解該校九年級(jí)學(xué)生對(duì)藍(lán)球、乒乓球、羽毛球、足球四種球類運(yùn)動(dòng)項(xiàng)目的喜愛(ài)情況,對(duì)九年級(jí)部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,每名學(xué)生必須且只能選擇最喜愛(ài)的一項(xiàng)運(yùn)動(dòng)項(xiàng)目,將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題:
(1)這次被抽查的學(xué)生有 人;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在統(tǒng)計(jì)圖2中,“乒乓球”對(duì)應(yīng)扇形的圓心角是 度;
(3)若該校九年級(jí)共有480名學(xué)生,估計(jì)該校九年級(jí)最喜歡足球的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)二次函數(shù)的二次項(xiàng)系數(shù)為﹣1,且圖象的頂點(diǎn)坐標(biāo)為(0,﹣3).則這個(gè)二次函數(shù)的表達(dá)式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,正比例函數(shù)y=2x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為2,AC⊥x軸于點(diǎn)C,連接BC.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)y=圖象上的一點(diǎn),且滿足△OPC與△ABC的面積相等,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com