【題目】如圖,正方形ABCD的邊長(zhǎng)為15,AG=CH=12,BG=DH=9,連接GH,則線段GH的長(zhǎng)為 .
【答案】3
【解析】解:如圖,延長(zhǎng)BG交CH于點(diǎn)E,
在△ABG和△CDH中,
,
∴△ABG≌△CDH(SSS),
AG2+BG2=AB2 ,
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
,
∴△ABG≌△BCE(ASA),
∴BE=AG=12,CE=BG=9,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=12﹣9=3,
同理可得HE=3,
在Rt△GHE中,GH= ,
故答案為:3 .
延長(zhǎng)BG交CH于點(diǎn)E,根據(jù)正方形的性質(zhì)證明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,共有4張牌,分別對(duì)應(yīng)5元,10元,15元,20元的現(xiàn)金優(yōu)惠券,小明只能看到牌的背面.
(1)如果隨機(jī)翻一張牌,那么抽中20元現(xiàn)金優(yōu)惠券的概率是 .
(2)如果隨機(jī)翻兩張牌,且第一次翻的牌不參與下次翻牌,則所獲現(xiàn)金優(yōu)惠券的總值不低于30元的概率是多少?請(qǐng)畫樹狀圖或列表格說明問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PB:PC=1:2.
(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若AD=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家到圖書館看報(bào)然后返回,他離家的距離y與離家的時(shí)間x之間的對(duì)應(yīng)關(guān)系如圖所示,如果小明在圖書館看報(bào)30分鐘,那么他離家50分鐘時(shí)離家的距離為 km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為節(jié)約水資源,制定了新的居民用水收費(fèi)標(biāo)準(zhǔn).按照新標(biāo)準(zhǔn),用戶每月繳納的水費(fèi)y(元)與每月用水量x(m3)之間的關(guān)系如圖所示.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費(fèi)79.8元,則該用戶二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小玲跑步中途改為步行,到達(dá)圖書館恰好用30 min.小東騎自行車以300 m/min的速度直接回家.兩人離家的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖9所示.
(1)家與圖書館之間的路程為 m,小玲步行的速度為 m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已A為頂點(diǎn)的等腰△ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)D,過點(diǎn)D作EF∥BC分別交AB、AC于E、F.
(1)求證:BE=DE;
(2)若△ABC的周長(zhǎng)比△AEF的周長(zhǎng)大10,試求出BC的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com