【題目】已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過(guò)點(diǎn)P(﹣3,1),對(duì)稱軸是經(jīng)過(guò)(﹣1,0)且平行于y軸的直線.
(1)求m、n的值
(2)如圖,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
【答案】
(1)
解:∵對(duì)稱軸是經(jīng)過(guò)(﹣1,0)且平行于y軸的直線,
∴﹣=﹣1,
∴m=2,
∵二次函數(shù)y=x2+mx+n的圖象經(jīng)過(guò)點(diǎn)P(﹣3,1),
∴9﹣3m+n=1,得出n=3m﹣8.
∴n=3m﹣8=﹣2
(2)
解:∵m=2,n=﹣2,
∴二次函數(shù)為y=x2+2x﹣2,
作PC⊥x軸于C,BD⊥x軸于D,則PC∥BD,
∴=,
∵P(﹣3,1),
∴PC=1,
∵PA:PB=1:5,
∴=,
∴BD=6,
∴B的縱坐標(biāo)為6,
代入二次函數(shù)為y=x2+2x﹣2得,6=x2+2x﹣2,
解得x1=2,x2=﹣4(舍去),
∴B(2,6),
∴,解得,
∴一次函數(shù)的表達(dá)式為y=x+4.
【解析】(1)利用對(duì)稱軸公式求得m,把P(﹣3,1)代入二次函數(shù)y=x2+mx+n得出n=3m﹣8,進(jìn)而就可求得n;
(2)根據(jù)(1)得出二次函數(shù)的解析式,根據(jù)已知條件,利用平行線分線段成比例定理求得B的縱坐標(biāo),代入二次函數(shù)的解析式中求得B的坐標(biāo),然后利用待定系數(shù)法就可求得一次函數(shù)的表達(dá)式.
【考點(diǎn)精析】掌握確定一次函數(shù)的表達(dá)式是解答本題的根本,需要知道確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問(wèn)題的一般方法是待定系數(shù)法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DBC是兩個(gè)具有公共邊的全等三角形,AB=AC=3cm.BC=2cm,將△DBC沿射線BC平移一定的距離得到△D1B1C1 , 連接AC1 , BD1 . 如果四邊形ABD1C1是矩形,那么平移的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形 OABC中,OA=3,OC=5,分別以 OA、OC所在直線為x 軸、y 軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與C、B重合),反比例函數(shù)y=(k>0)的圖象經(jīng)過(guò)點(diǎn)D且與邊BA交于點(diǎn)E,連接DE.
(1)連接OE,若△EOA的面積為2,則k=
(2)連接CA,DE與CA是否平行?請(qǐng)說(shuō)明理由:
(3)是否存在點(diǎn)D,使得點(diǎn)B關(guān)于DE的對(duì)稱點(diǎn)在OC上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過(guò)點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.
(1)若∠AOB=60°,OM=4,OQ=1,求證:CN⊥OB
(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.
①問(wèn):﹣的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請(qǐng)說(shuō)明理由.
②設(shè)菱形OMPQ的面積為S1 , △NOC的面積為S2 , 求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△ABE經(jīng)旋轉(zhuǎn),可與△CBF重合,AE的延長(zhǎng)線交FC于點(diǎn)M,以下結(jié)論正確的是( )
A.AM⊥FC
B.BF⊥CF
C.BE=CE
D.FM=MC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=2,則FM的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4)
(1)請(qǐng)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1 , 直接寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫(huà)出△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫(xiě)出點(diǎn)A2的坐標(biāo);
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)系中,兩個(gè)量之間為反比例函數(shù)關(guān)系的是( 。
A.正方形的面積S與邊長(zhǎng)a的關(guān)系
B.正方形的周長(zhǎng)l與邊長(zhǎng)a的關(guān)系
C.矩形的長(zhǎng)為a , 寬為20,其面積S與a的關(guān)系
D.矩形的面積為40,長(zhǎng)a與寬b之間的關(guān)系
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com