【題目】請閱讀下列解題過程:

解一元二次不等式:.

解:

,或

解得.

一元二次不等式的解集為.

結(jié)合上述解答過程回答下列問題:

1)上述解題過程滲透的數(shù)學思想為________;

2)一元二次不等式的解集為________;

3)請用類似的方法解一元二次不等式:.

【答案】1)分類討論思想;(2;(3.

【解析】

1)根據(jù)分類討論的數(shù)學思想的定義,即也稱分情況討論,當一個數(shù)學問題在一定的題設(shè)下,其結(jié)論并不唯一時,就需要對這一問題進行必要的分類即可解答;(2)仿照(1)的方法進行解答即可;(3)仿照(1)的方法進行解答即可.

1)分類討論思想;

2)由解題過程可知:,即.

,或,解得.

3,即

解得.

∴一元二次不等式的解集為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的是小慶為慶祝中華人民共和國成立70周年設(shè)計的“70”字形,AB與大⊙O相切于點A, AO與小⊙O相交于點E,D是大⊙O上一點,CD//AB,CD過點E且交大⊙O于另一點F,OE=2

1)求證:CD為小⊙O的切線.

2)當AD=AO時,求DF的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=x+的圖象與性質(zhì)進行了探究.

下面是小明的探究過程,請補充完整:

(1)函數(shù)y=x+的自變量x的取值范圍是_____

(2)下表列出了yx的幾組對應(yīng)值,請寫出m,n的值:m=_____,n=_____;

x

﹣3

﹣2

﹣1

1

2

3

4

y

﹣2

m

2

n

(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,請完成:

①當y=﹣時,x=_____

②寫出該函數(shù)的一條性質(zhì)_____

③若方程x+=t有兩個不相等的實數(shù)根,則t的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】清清從家步行到公交車站臺,等公交車去學校.下公交車后又步行了一段路程才到學校. 圖中的折線表示清清的行程s()與所花時間t ()之間的函數(shù)關(guān)系. 下列說法錯誤的是(

A. 清清等公交車時間為3分鐘 B. 清清步行的速度是80/

C. 公交車的速度是500/ D. 清清全程的平均速度為290/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,,DCB邊上一動點,,連接AD,于點E,延長線BEAC于點F

1)若,則____________;

2)若,求證:;

3)若FAC的中點,請直接寫出n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象過點(﹣2,0),對稱軸為直線x1.有以下結(jié)論:

abc0

8a+c0;

③若Ax1,m),Bx2,m)是拋物線上的兩點,當xx1+x2時,yc;

④點M,N是拋物線與x軸的兩個交點,若在x軸下方的拋物線上存在一點P,使得PMPN,則a的取值范圍為a1

⑤若方程ax+2)(4x)=﹣2的兩根為x1x2,且x1x2,則﹣2x1x24

其中結(jié)論正確的有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在平面直角坐標系中,頂點的坐標分別為A(-44),B(-1,1)C(-14)

(1)畫出與△ABC關(guān)于y軸對稱的△A1B1C1

(2)將△ABC繞點B逆時針旋轉(zhuǎn)90°,得到△A2BC2,畫兩出△A2BC2

(3)求線段AB在旋轉(zhuǎn)過程中掃過的圖形面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,CBD=30°,則DF的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AC為直徑的OBC于點D,點EAC延長線上一點,且∠BAC2CDE

1)求證:DEO的切線;

2)若cosB,CE2,求DE

查看答案和解析>>

同步練習冊答案