【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格出售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
【答案】
(1)解:由題意得:
y=90﹣3(x﹣50)
化簡得:y=﹣3x+240
(2)解:由題意得:
w=(x﹣40)y
(x﹣40)(﹣3x+240)
=﹣3x2+360x﹣9600
(3)解:w=﹣3x2+360x﹣9600
∵a=﹣3<0,
∴拋物線開口向下.
當 時,w有最大值.
又x<60,w隨x的增大而增大.
∴當x=55元時,w的最大值為1125元.
∴當每箱蘋果的銷售價為55元時,可以獲得1125元的最大利潤
【解析】本題是通過構建函數(shù)模型解答銷售利潤的問題.依據(jù)題意易得出平均每天銷售量(y)與銷售價x(元/箱)之間的函數(shù)關系式為y=90﹣3(x﹣50),然后根據(jù)銷售利潤=銷售量×(售價﹣進價),列出平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式,再依據(jù)函數(shù)的增減性求得最大利潤.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:
(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合),我們定義:這樣的兩條拋物L1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.
(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點C,試求出點C關于該拋物線對稱軸對稱的點D的坐標;
(2)請求出以點D為頂點的L3的友好拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請寫出a1與a2的關系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2 .
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AE與BF交于點G.下列結論錯誤的是( )
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線與BC的延長線交于點E,與DC交于點F.
(1)求證:CD=BE;
(2)若AB=4,點F為DC的中點,DG⊥AE,垂足為G,且DG=1,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于D.若∠A:∠ABC:∠ACB=3:4:5,E為線段BD上任一點.
(1)試求∠ABD的度數(shù);
(2)求證:∠BEC>∠A.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com