如果將分式
x2-y2
x+y
中的x和y都擴(kuò)大到原來(lái)的3倍,那么分式的值( 。
分析:x,y都擴(kuò)大成原來(lái)的3倍就是分別變成原來(lái)的3倍,變成3x和3y.用5x和5y代替式子中的x和y,看得到的式子與原來(lái)的式子的關(guān)系.
解答:解:用3x和3y代替式子中的x和y得:
9(x2-y2)
3(x+y)
=
3(x2-y2)
x+y

則分式的值擴(kuò)大為原來(lái)的3倍.
故選;A.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是分式的基本性質(zhì),解題的關(guān)鍵是抓住分子、分母變化的倍數(shù).解此類題首先把字母變化后的值代入式子中,然后約分,再與原式比較,最終得出結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程
2x-1
x
-
x
2x-1
=2
時(shí),如果設(shè)
2x-1
x
=y
,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.請(qǐng)用換元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解分式方程
2(x2+1)
x
+
6x
x2+1
=7時(shí),如果設(shè)y=
x2+1
x
,那么將原方程化為關(guān)于y的一元二次方程的一般形式是( 。
A、2y2-7y+6=0
B、2y2+7y+6=0
C、y2-7y+6=0
D、y2+7y+6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:雙柏縣 題型:單選題

用換元法解分式方程
2(x2+1)
x
+
6x
x2+1
=7時(shí),如果設(shè)y=
x2+1
x
,那么將原方程化為關(guān)于y的一元二次方程的一般形式是(  )
A.2y2-7y+6=0B.2y2+7y+6=0C.y2-7y+6=0D.y2+7y+6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年福建省漳州市漳浦縣深土中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程時(shí),如果設(shè),并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成,即可解出x1和x2.請(qǐng)用換元法解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年云南省玉溪市易門縣六街中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程時(shí),如果設(shè),并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成,即可解出x1和x2.請(qǐng)用換元法解方程:

查看答案和解析>>

同步練習(xí)冊(cè)答案