【題目】小文、小亮從學(xué)校出發(fā)到青少年宮參加書法比賽,小文步行一段時(shí)間后,小亮騎自行車沿相同路線行進(jìn),兩人均勻速前行.他們的路程差s(米)與小文出發(fā)時(shí)間t(分)之間的函數(shù)關(guān)系如圖所示.下列說法:小亮先到達(dá)青少年宮;小亮的速度是小文速度的2.5倍;a=24b=480.其中正確的是

A①②③ B①②④ C①③④ D①②③④

【答案】B

【解析】

試題由圖象得出小文步行720,需要9分鐘,所以小文的運(yùn)動(dòng)速度為:720÷9=80m/t)。

當(dāng)?shù)?/span>15鐘時(shí),小亮運(yùn)動(dòng)15﹣9=6(分鐘),運(yùn)動(dòng)距離為:15×80=1200m),

小亮的運(yùn)動(dòng)速度為:1200÷6=200m/t)。

200÷80=2.5,故小亮的速度是小文速度的2.5倍正確。

當(dāng)?shù)?/span>19分鐘以后兩人之間距離越來遠(yuǎn)近,說明小亮已經(jīng)到達(dá)終點(diǎn),故小亮先到達(dá)青少年宮正確。

此時(shí)小亮運(yùn)動(dòng)19﹣9=10(分鐘),運(yùn)動(dòng)總距離為:10×200=2000m)。

小文運(yùn)動(dòng)時(shí)間為:2000÷80=25(分鐘),故a的值為25,故a=24錯(cuò)誤。

小文19分鐘運(yùn)動(dòng)距離為:19×80=1520m),

b=2000﹣1520=480,故b=480正確。

綜上所述,正確的有:①②④。故選B。 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】眉山市三蘇雕像廣場是為了紀(jì)念三蘇父子而修建的.原是一塊長為(4a+2b)米,寬為(3a-b)米的長方形地塊,現(xiàn)在政府對(duì)廣場進(jìn)行改造,計(jì)劃將如圖四周陰影部分進(jìn)行綠化,中間將保留邊長為(a+b)米的正方形三蘇父子雕像,則綠化的面積是多少平方米?并求出當(dāng)a=20,b=10時(shí)的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.

(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500m,先到終點(diǎn)

的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時(shí)間t(s)之間的關(guān)系

如圖所示,給出以下結(jié)論:a=8;b=92;c=123.其中正確的是【 】

A.①②③ B.僅有①② C.僅有①③ D.僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4,BC6,將ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CEAD于點(diǎn)F,則DF的長等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)O是BD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( )

A.2對(duì)
B.3對(duì)
C.4對(duì)
D.5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案