【題目】如圖,在矩形中,是延長(zhǎng)線上的定點(diǎn),為邊上的一個(gè)動(dòng)點(diǎn),連接,將射線繞點(diǎn)順時(shí)針旋轉(zhuǎn),交射線于點(diǎn),連接.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.
下面是小東探究的過程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)在上的不同位置,畫圖、測(cè)量,得到了線段的長(zhǎng)度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
0.00 | 0.53 | 1.00 | 1.69 | 2.17 | 2.96 | 3.46 | 3.79 | 4.00 | |
0.00 | 1.00 | 1.74 | 2.49 | 2.69 | 2.21 | 1.14 | 0.00 | 1.00 | |
4.12 | 3.61 | 3.16 | 2.52 | 2.09 | 1.44 | 1.14 | 1.02 | 1.00 |
在的長(zhǎng)度這三個(gè)量中,確定_____的長(zhǎng)度是自變量,_____的長(zhǎng)度和_____的長(zhǎng)度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系中,畫出(1)中所確定的兩個(gè)函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)時(shí),的長(zhǎng)度約為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬(wàn)人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C.
(1)求出k,b及m的值.
(2)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)y1>y2時(shí),x的取值范圍是 ________.
(3)若P是線段AB上的一點(diǎn),連接PC,若△PCA的面積等于,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠色無(wú)公害蔬菜基地有甲、乙兩種植戶,他們種植了兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植類蔬菜面積(單位:畝) | 種植類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | |||
乙 |
說明:不同種植戶種植的同類蔬菜每畝的平均收入相等;畝為土地面積單位
求兩類蔬菜每畝的平均收入各是多少元?
某種植戶準(zhǔn)備租畝地用來(lái)種植兩類蔬菜,為了使總收入不低于元且種植類蔬菜的面積多于種植類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案;
在的基礎(chǔ)上,指出哪種方案使總收入最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,BC=2AB,E,F分別是BC,AD的中點(diǎn),AE,BF交于點(diǎn)O,連接EF,OC.
(1)求證:四邊形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了維護(hù)每個(gè)學(xué)生平等接受教育的權(quán)利,我區(qū)小學(xué)多年來(lái)遵照“就近劃片入學(xué)”原則實(shí)行陽(yáng)光招生,電腦隨機(jī)分班,分班時(shí)對(duì)所有學(xué)生一視同仁.小紅和小蘭兩個(gè)女孩是鄰居,今年夏天被劃分到城區(qū)的同一所小學(xué),這所學(xué)校一年級(jí)有1班、2班、3班、4班共四個(gè)班.下面是分班前兩個(gè)女孩家長(zhǎng)的一段對(duì)話:
小紅媽媽說:“真希望她倆能分到同一個(gè)班.”
小蘭媽媽說:“她倆可能分到同一個(gè)班,也可能分不到同一個(gè)班,所以她倆分到同一個(gè)班的可能性是50%.”
請(qǐng)你用所學(xué)的知識(shí)分析小蘭媽媽的說法是否正確,如正確,請(qǐng)說明理由;如不正確請(qǐng)用列表或畫樹狀圖的方法求出小紅和小蘭分到同一個(gè)班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,F為AB的中點(diǎn),連接DF,EF,∠ACB=90°,∠ABC=30°.則以下4個(gè)結(jié)論:①AC⊥DF;②四邊形BCDF為平行四邊形;③DA+DF=BE;④其中,正確的 是( 。
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,的平分線交邊于點(diǎn).以上一點(diǎn)為圓心作,使經(jīng)過點(diǎn)和點(diǎn).
(1)判斷直線與的位置關(guān)系,并說明理由.
(2)若,.
①求的半徑;
②設(shè)與邊的另一個(gè)交點(diǎn)為,求線段,與劣弧所圍成的陰影部分的面積.(結(jié)果保留根號(hào)和)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com