【題目】如圖1,直線y=k1x+b與反比例函數(shù)y=的圖象交于A(1,6),B(a,3)兩點(diǎn).
(1)求k1、k2的值;
(2)結(jié)合圖形,在第一象限內(nèi),直接寫出k1x+b﹣>0時(shí),x的取值范圍;
(3)如圖2,梯形OBCE中,BC∥OE,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,CE和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCE的面積為9時(shí),請(qǐng)判斷PC和PE的大小關(guān)系,并說(shuō)明理由.
【答案】(1)k1、k2的值分別為﹣3,6;(2)1<x<2時(shí),k1x+b﹣>0;(3)PC=PE.理由見(jiàn)解析.
【解析】
(1)先把A(1,6)代入y=可求得k2=1×6=6,再把B(a,3)代入y=可得a=2,即B點(diǎn)坐標(biāo)為(2,3),然后把A(1,6)、B(2,3)代入y=k1x+b得到關(guān)于k1、b的方程組,解方程組即可;(2)觀察圖象得到當(dāng)x<0或1<x<2時(shí),直線y=k1x+b都在反比例函數(shù)y=的圖象上方,即k1x+b﹣>0;(3)根據(jù)梯形的性質(zhì)得到BC∥OE,則由B點(diǎn)坐標(biāo)為(2,3),得到C點(diǎn)的縱坐標(biāo)為3,設(shè)C點(diǎn)坐標(biāo)為(a,3),則E點(diǎn)坐標(biāo)為(a,0),P點(diǎn)的橫坐標(biāo)為a,利用P點(diǎn)在y=的圖象上,則P點(diǎn)坐標(biāo)為(a,),根據(jù)梯形的面積公式得到(BC+OE)×CE=9,即(a+a﹣2)×3=9,解得a=4,易得PC=3﹣,PE=﹣0=,于是有PC=PE.
(1)把A(1,6)代入y=得,k2=1×6=6,所以反比例函數(shù)的解析式為y=,
把B(a,3)代入y=得,3=,解得a=2,所以B點(diǎn)坐標(biāo)為(2,3),
把A(1,6)、B(2,3)代入y=k1x+b得, ,解得 ,所以k1、k2的值分別為﹣3,6;
(2)1<x<2時(shí),k1x+b﹣>0;
(3)PC=PE.理由如下:
∵四邊形OBDE為梯形,
∴BC∥OE,
而B點(diǎn)坐標(biāo)為(2,3),
∴C點(diǎn)的縱坐標(biāo)為3,
設(shè)C點(diǎn)坐標(biāo)為(a,3),
∵CE⊥x軸,
∴E點(diǎn)坐標(biāo)為(a,0),P點(diǎn)的橫坐標(biāo)為a,
∵P點(diǎn)在y=的圖象上,
∴P點(diǎn)坐標(biāo)為(a,),
∵梯形OBCE的面積為9,
∴(BC+OE)×CE=9,即(a+a﹣2)×3=9,解得a=4,
∴C點(diǎn)坐標(biāo)為(4,3),P點(diǎn)坐標(biāo)為(4,),E點(diǎn)坐標(biāo)為(4,0),
∴PC=3﹣=,PE=﹣0=,
∴PC=PE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
環(huán)視當(dāng)今世界,科技創(chuàng)新已成為發(fā)達(dá)國(guó)家保持持久競(jìng)爭(zhēng)力的“法寶”.研究與試驗(yàn)發(fā)展(R&D)活動(dòng)的規(guī)模和強(qiáng)度指標(biāo)反映一個(gè)地區(qū)的科技實(shí)力和核心競(jìng)爭(zhēng)力.
北京市在研究和實(shí)驗(yàn)發(fā)展(R&D)活動(dòng)中的經(jīng)費(fèi)投入也在逐年增加.2012年北京市全年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1031.1億元,比上年增長(zhǎng)10.1%.2013年全年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1200.7億元.2014年全年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1286.6億元.2015年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1367.5億元.2016年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1479.8億元,相當(dāng)于地區(qū)生產(chǎn)總值的5.94%.
(以上數(shù)據(jù)來(lái)源于北京市統(tǒng)計(jì)局)
根據(jù)以上材料解答下列問(wèn)題:
(1)用折線統(tǒng)計(jì)圖或者條形統(tǒng)計(jì)圖將2012﹣2016年北京市在研究和實(shí)驗(yàn)發(fā)展(R&D)活動(dòng)中的經(jīng)費(fèi)投入表示出來(lái),并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)繪制的統(tǒng)計(jì)圖提供的信息,預(yù)估2017年北京市在研究和實(shí)驗(yàn)發(fā)展(R&D)活動(dòng)中的經(jīng)費(fèi)投入約為多少億元,寫出你的預(yù)估理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在,蘇寧商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物.
(1)顧客購(gòu)買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購(gòu)物合算?
(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購(gòu)買合算?小張能節(jié)省多少元錢?
(3)小張按合算的方案,把這臺(tái)冰箱買下,如果商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價(jià)為30元時(shí),每天可銷售200件:當(dāng)每件的售價(jià)每增加1元,每天的銷量將減少5件.
求銷量件與售價(jià)元之間的函數(shù)表達(dá)式;
如果每天的銷量不低于150件,那么,當(dāng)售價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
該商店老板熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出100元給希望工程,為保證捐款后每天剩余利潤(rùn)不低于2900元,請(qǐng)直接寫出該商品售價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F.
(1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.
①求證△ADB≌△AOB;
②求點(diǎn)H的坐標(biāo).
(3)記K為矩形AOBC對(duì)角線的交點(diǎn),S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ACB中,∠C=90°,AC=3 cm,BC=4 cm,以BC為直徑作☉O交AB于點(diǎn)D.
(1)求線段AD的長(zhǎng)度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問(wèn)當(dāng)點(diǎn)E在什么位置時(shí),直線ED與☉O相切?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知P(1,1),C為y軸正半軸上一點(diǎn),D為第一象限內(nèi)一點(diǎn),且PC=PD,∠CPD=90°,過(guò)點(diǎn)D作直線AB⊥x軸于B,直線AB與直線y=x交于點(diǎn)A,且BD=3AD,連接CD,直線CD與直線y=x交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com