【題目】如圖,已知線段AB=6,C為線段AB上的一個動點(不與A、B重合),將線段AC繞點A逆時針旋轉(zhuǎn)120°得到AD,將線段BC繞點B順時針旋轉(zhuǎn)120°得到BE,O外接于CDE,則O的半徑最小值為_____

【答案】3

【解析】

如圖,連接OD、OA、OC、OB、OE.只要證明AOB是等邊三角形,即可推出當(dāng)OCAB時,OC的長最短,此時OC=OAsin60°.

解:如圖,連接OD、OA、OC、OB、OE.

OA=OA,OD=OC,AD=AC,

∴△OAD≌△OAC,

∴∠OAC=OAD=CAD=60°,

同法可證:∠OBC=OBE=ABE=60°,

∴△AOB是等邊三角形,

∴當(dāng)OCAB時,OC的長最短,此時OC=OAsin60°=3

故答案為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形MON中,圓心角∠MON=60°,邊長為2的菱形OABC的頂點A,C,B分別在ON,OM上,且NDAB,交CB的延長線于點D,則陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的外角平分線上一點,且滿足,過點于點的延長線于點,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.

(1)如圖①,若∠P=35°,求∠ABP的度數(shù);

(2)如圖②,若DAP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,的垂直平分線交,

1)求的度數(shù);

2)若,,求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一期間,小明一家一起去旅游,如圖是小明設(shè)計的某旅游景點的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實際長度100m,在該圖紙上可看到兩個標(biāo)志性景點A,B.若建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,則點A(﹣3,1),B(﹣3,﹣3),第三個景點C(1,3)的位置已破損.

(1)請在圖中畫出平面直角坐標(biāo)系,并標(biāo)出景點C的位置;

(2)平面直角坐標(biāo)系的坐標(biāo)原點為點O,ACO是直角三角形嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村的居民自來水管道需要改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成,若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍,如果由甲、乙兩隊先合做天,那么余下的工程由甲隊單獨完成還需5天.設(shè)這項工程的規(guī)定時間是x天,則根據(jù)題意,下面所列方程正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c x 軸的一個交點為(m,0).

(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對稱軸;

(2) m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學(xué)的思路寫出證明過程;

(3)用文字敘述所證命題的逆命題.

查看答案和解析>>

同步練習(xí)冊答案