【題目】如圖14,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,,S10,則S1+S2+S3+…+S10=

【答案】p.

【解析】試題分析:(1)圖1,作輔助線構(gòu)建正方形OECF,設(shè)圓O的半徑為r,根據(jù)切線長(zhǎng)定理表示出ADBD的長(zhǎng),利用AD+BD=5列方程求出半徑=1a、b是直角邊,c為斜邊),運(yùn)用圓面積公式=πr2求出面積

2)圖2,先求斜邊上的高CD的長(zhǎng),再由勾股定理求出ADBD,利用半徑a、b是直角邊,c為斜邊)求兩個(gè)圓的半徑分別是,從而求出兩圓的面積和;

3)圖3,繼續(xù)求高DMCMBM,利用半徑ab是直角邊,c為斜邊)求三個(gè)圓的半徑分別是,從而求出三個(gè)圓的面積和

綜上所述:發(fā)現(xiàn)S1+S2+S3+…+S10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】電影院里,我們常用“幾行幾列”來(lái)描述一張票對(duì)應(yīng)的位置,現(xiàn)引入這樣的思想,用如圖的兩個(gè)互相垂直的數(shù)軸來(lái)描述這樣的點(diǎn)位,只不過(guò)這個(gè)點(diǎn)位信息會(huì)有負(fù)數(shù)甚至0哦。圖中正方形網(wǎng)格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)。比如圖中的點(diǎn)P,我們用(橫向?qū)?yīng)數(shù)值,豎向?qū)?yīng)數(shù)值)來(lái)定義其點(diǎn)位信息,其點(diǎn)位記作(4,-2);再如ABC,其頂點(diǎn)都在格點(diǎn)上,其中A記作(4,4)、B記作(1,2)、C記作(3,2).請(qǐng)解答下列問(wèn)題:

(1)ABC向下平移5個(gè)單位長(zhǎng),再向左平移2個(gè)單位長(zhǎng),畫(huà)出兩次平移后得到的A1B1C1

(2)給出A1、B1C1的點(diǎn)位:A1_____,___)、B1_____,___)、C1_____,___);

(3)點(diǎn)E、F點(diǎn)位分別為E(-4,3)、F(0,-3),則線段EF與線段AB的關(guān)系為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直線MN經(jīng)過(guò)點(diǎn)ABDMN于點(diǎn)D,CEMN于點(diǎn)E.

(1)試判斷線段DE、BDCE之間的數(shù)量關(guān)系,并說(shuō)明理由;

(2)當(dāng)直線MN運(yùn)動(dòng)到如圖2所示位置時(shí),其余條件不變,判斷線段DE、BDCE之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,線段和射線交于點(diǎn)

)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫(xiě)作法).

①在射線上作一點(diǎn),使,連接;

②作的角平分線交點(diǎn);

③在射線上作一點(diǎn),使,連接

)在()所作的圖形中,通過(guò)觀察和測(cè)量可以發(fā)現(xiàn),請(qǐng)將下面的證明過(guò)程補(bǔ)充完整.

證明:∵,

____________________,①

平分,

,

__________,②

,

,

,

,

.( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BA延長(zhǎng)線上一點(diǎn),E是AC的中點(diǎn).

(1)利用尺規(guī)作出∠DAC的平分線AM,連接BE并延長(zhǎng)交AM于點(diǎn)F,(要求在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫(xiě)作法);

(2)試判斷AF與BC有怎樣的位置關(guān)系與數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙OADBC,垂足為D

1)如圖1, BDDC,求∠B的度數(shù);

2)如圖2,BEAC,垂足為EBEAD于點(diǎn)F,過(guò)點(diǎn)BBGAD交⊙O于點(diǎn)GAB邊上取一點(diǎn)H,使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,ADBC邊上的中線.

(1)畫(huà)出與△ACD關(guān)于點(diǎn)D成中心對(duì)稱的三角形;

(2)找出與AC相等的線段;

(3)探究:△ABCABAC的和與中線AD之間有何大小關(guān)系?并說(shuō)明理由;

(4)AB=5,AC=3,求線段AD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,六邊形ABCDEFAFCD,ABDE,∠A=140°,∠B=100°,∠E=90°,:∠C、∠D、∠F的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開(kāi)展拓展性課程建設(shè),設(shè)計(jì)開(kāi)設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)將條形圖補(bǔ)充完整;

(3)若該校共有1600名學(xué)生,請(qǐng)估計(jì)全校選擇體育類的學(xué)生人數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案