精英家教網 > 初中數學 > 題目詳情
如圖,矩形ABOC的邊OB,OC分別在坐標軸上,將矩形ABOC繞原點O順時針旋轉90°后,得到的矩形為DEOF.已知點A的坐標為(-2,m),反比例函數y=
n
x
的圖象(第一象限)經過線段DF的中點M,且滿足m+n=6.
(1)求m,n的值;
(2)求直線CM的函數解析式;
(3)設直線CM交DE于點N,請判斷點N是否在反比例函數y=
n
x
的圖象上(寫出理由).
分析:(1)由點A的坐標為(-2,m),得出矩形中AC=BO=OE=DF=2,再由反比例函數y=
n
x
的圖象(第一象限)經過線段DF的中點M,得出M點的縱坐標為1,利用反比例函數的性質得出m,n的關系,進而求出m,n.
(2)根據m,n的值即可求出C,M點的坐標,進而利用待定系數法求出直線解析式即可;
(3)利用兩直線交點求法得出N點坐標,再代入反比例函數解析式即可得出點N是否在圖象上.
解答:解:(1)∵將矩形ABOC繞原點O順時針旋轉90°后,得到的矩形為DEOF,點A的坐標為(-2,m),
∴AC=BO=OE=DF=2,CO=OF=m,
∵反比例函數y=
n
x
的圖象(第一象限)經過線段DF的中點M,
∴M點的縱坐標為1,橫坐標為:m,
∵M在反比例函數y=
n
x
的圖象上,
∴xy=n=m,
∵m+n=6,
∴m=3,n=3; 
      
(2)∵m=3,
∴C點坐標為:(0,3),M點坐標為:(3,1),
假設直線CM的函數解析式為:y=kx+b,
將C,M代入解析式得:
b=3
3k+b=1

解得:
k=-
2
3
b=3
,
故直線CM的函數解析式為:y=-
2
3
x+3


(3)∵DE是平行于x軸的直線,且過(0,2)點,故直線DE可以表示為:y=2,
∴直線CM與直線DE交點N的坐標求法應該是將兩直線解析式聯立,求出公共解集,
y=-
2
3
x+3
y=2
,
解得:
x=
3
2
y=2
,
故N點的坐標為:(
3
2
,2),
3
2
×2=3,
∴點N在y=
3
x
上.
點評:此題主要考查了反比例函數與一次函數的綜合應用,根據M點的坐標以及反比例函數的性質xy=n,求出m=n是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABOC的面積為3,反比例函數y=
k
x
的圖象過點A,則k=( 。
A、3B、-1.5C、-3D、-6

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABOC的面積為2,反比例函數圖象y=
k
x
過點A,則k的值是(  )
A、2B、-2C、4D、-4

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,矩形ABOC的面積為6,若反比例函數y=
kx
(x<0)的圖象經過點A,則該反比例函數的關系式為
 
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,矩形ABOC的面積為6,反比例函數y=
k
x
的圖象經過點A,則k等于( 。精英家教網
A、6B、3C、-3D、-6

查看答案和解析>>

同步練習冊答案