精英家教網 > 初中數學 > 題目詳情
如圖1,△ABC是直角三角形,如果用四張與△ABC全等的三角形紙片恰好拼成一個等腰梯形,如圖2,那么在Rt△ABC中,的值是   
【答案】分析:根據等腰梯形的同一底上的兩個角相等,可得到直角三角形的兩個較小的銳角和等于一個較大的銳角,再根據直角三角形兩銳角互補的性質可求出一個銳角的度數,根據三角函數的定義及特殊角度的三角函數值可求得的值.
解答:解:因為等腰梯形同一底上的兩個角相等,所以直角三角形的兩較小銳角之和等于較大的銳角,則∠B=60°
∴sin∠B==
點評:此題考查等腰梯形的性質和直角三角形的性質及讀圖能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,BC邊不動,點A是一個動點.當點A豎直向上運動,∠A越來越小,∠B、∠C越來越大.若∠A減少α度,∠B增加β度,∠C增加γ度,請寫出α、β、γ三者之間的等量關系,并說明你是如何得到的.

查看答案和解析>>

科目:初中數學 來源: 題型:

30、如圖,在△ABC中,AB=AC,D是BC的中點,連接AD.DE⊥AB,DF⊥AC,E,F是垂足.圖中共有多少對全等三角形?請直接用“≌”符號把它們分別表示出來.(不要求證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,BC邊不動,點A豎直向上運動,∠A越來越小,∠B,∠C越來越大.若∠A減小x°,∠B增加y°,∠C增加z°,則x,y,z之間的關系是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

學習過三角函數,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,也可以在等腰三角形中建立邊角之間的聯系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
1
2
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設sinA=k,請直接用k的代數式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數學 來源:2011-2012學年四川省沐川縣初三二調考試數學卷(解析版) 題型:解答題

從甲、乙兩題中選做一題,如果兩題都做,只以甲題計分.

1.甲題:若關于x的一元二次方程有實數根α、β.求實數k的取值范圍;設,求t的最小值.

2.乙題:如圖,在△ABC 中,點O是AC邊上的一個動點,過點O作直

線MN∥BC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.

 

查看答案和解析>>

同步練習冊答案