【題目】如圖,已知二次函數(shù) 的圖象M經(jīng)過(,0),(2,)兩點且與軸的另一個交點為.
(1)求該二次函數(shù)的解析式;
(2)點是線段上的動點(點G與線段的端點不重合),若△AGB∽△ABC,求點G的坐標(biāo);
(3)設(shè)拋物線的對稱軸為,點是拋物線上一動點,當(dāng)△ACD的面積為時,點D關(guān)于的對稱點為E,能否在拋物線和上分別找到點P、Q,使得以點D、E、P、Q為頂點的四邊形為平行四邊形. 若能,求出點P的坐標(biāo);若不能,請說明理由.
【答案】(1);(2)點G的坐標(biāo)為;(3)能. 點P的坐標(biāo)為或.
【解析】
(1)把點A、C坐標(biāo)代入二次函數(shù)的表達式,即可求解;
(2)先求出直線AC的解析式,設(shè)點G的坐標(biāo)為,根據(jù)勾股定理求出AC、AG,再由三角形相似對應(yīng)邊成比例求出k的值,進而得到答案;
(3)過D點作的垂線交于點H,根據(jù)=,列方程求出m的值,進而求出點D的坐標(biāo),再根據(jù)以點D、E、P、Q為頂點的四邊形為平行四邊形,則∥且,求得點 Q的坐標(biāo),進而求得點P的縱坐標(biāo).
(1)∵二次函數(shù)的圖象經(jīng)過A(,0),C(2,)兩點,
∴解得 .
∴二次函數(shù)的解析式為
(2)∵A(,0),C(2,)∴線段AC的解析式:.
設(shè)點G的坐標(biāo)為.
由可知:B(4,0)
∴AB=5,
AG=
∵△AGB∽△ABC,
∴
∴
∴
∴或(舍去)
∴點G的坐標(biāo)為
(3)能. 理由如下:如答圖,過D點作的垂線交于點H,
∵, ∴.
∵點是拋物線上一動點,上,
∴.
∵△ACD的面積為,
∴,
整理得,解得.
∴.
∵,∴圖象的對稱軸為.
∵點D關(guān)于的對稱點為E,∴
∴.
若以點D、E、P、Q為頂點的四邊形為平行四邊形,則∥且.
∵Q在對稱軸x=上,
∴Q的橫坐標(biāo)為,
∴點P的橫坐標(biāo)為或.
∴當(dāng)x=或時,點P的縱坐標(biāo)為.
∴點P的坐標(biāo)為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標(biāo)有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據(jù)兩個小球所標(biāo)金額之和返還相應(yīng)價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:
(1)該顧客至少可得___元購物券,至多可得___元購物券;
(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(1,t+1),B(t-5,-1)兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(c,p)和(n,q)是反比例函數(shù)y=圖象上任意兩點,且滿足c=n+1時,求的值.
(3)若點M(x1,y1)和N(x2,y2)在直線AB(不與A、B重合)上,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知x1<-3,0<x2<1,當(dāng)x1x2=-3時,判斷四邊形NFEM的形狀.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖).已知拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和點B(0,),頂點為C,點D在其對稱軸上且位于點C下方,將線段DC繞點D按順時針方向旋轉(zhuǎn)90°,點C落在拋物線上的點P處.
(1)求這條拋物線的表達式;
(2)求線段CD的長;
(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點M在y軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,二次函數(shù)圖像交軸于,交交軸于點,是拋物線的頂點,對稱軸經(jīng)過軸上的點.
(1)求二次函數(shù)關(guān)系式;
(2)對稱軸與交于點,點為對稱軸上一動點.
①求的最小值及取得最小值時點的坐標(biāo);
②在①的條件下,把沿著軸向右平移個單位長度時,設(shè)與重疊部分面積記為,求與之間的函數(shù)表達式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖所示的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
扇形統(tǒng)計圖
條形統(tǒng)計圖
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計圖中“不了解”部分所對應(yīng)扇形的圓心角度數(shù)為_______,并把條形統(tǒng)計圖補充完整;
(2)若該中學(xué)共有學(xué)生人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人;
(3)若從對校園安全知識達到“了解”程度的,,個女生和,個男生中隨機抽取人參加校園安全知識競賽,請用畫樹狀圖法或列表法求出恰好抽到個男生和個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費的班車,從入口處出發(fā),沿該公路開往草甸,途中停靠塔林(上下車時間忽略不計).第一班車上午8點發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車.小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達入口處,因還沒到班車發(fā)車時間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達塔林.離入口處的路程(米)與時間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車離入口處的路程(米)與時間(分)的函數(shù)表達式.
(2)求第一班車從人口處到達塔林所蓄的時間.
(3)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聘聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com