【題目】如圖,在直角坐標(biāo)平面中,O為原點,點A的坐標(biāo)為(20,0),點B在第一象限內(nèi),BO=10,sin∠BOA=

(1)在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫作法但需保留作圖痕跡)
(2)求點B的坐標(biāo)與cos∠BAO的值;
(3)若A,O位置不變,將點B沿 軸正半軸方向平移使得△ABO為等腰三角形,請直接寫出平移距離.

【答案】
(1)

如圖,

⊙C即為所求作的圓


(2)

B(8,6)

cos =


(3)

點B沿 軸向右平移2個單位或 個單位


【解析】(1)如圖,分別作OB,OA的垂直平分線,得到它們的交點,再畫圓,詳細(xì)方法:
畫OB的垂直平分線:分別以O(shè),B為圓心,以大于OB的長度畫弧,在OB的兩側(cè)相交于兩點,連接它們,即是OB的垂直平分線;
畫AB的垂直平分線:分別以A,B為圓心,以大于AB的長度畫弧,在OB的兩側(cè)相交于兩點,連接它們,即是AB的垂直平分線;
得到交點C,即是外接圓的圓心,以OC為半徑畫圓.

(2)如圖1,過點B作BDOA于D,則在RtOBD中,sin∠BOA= , BO=10,
則BD=OB×sin∠BOA=10×=6,
則OD=.
則B(8,6).
在RtABD中,因為A(20,0),則OA=20,AD=OA-OD=20-8=12,AB= ,
則cos ∠ BAO=.

圖1
(3)以O(shè)A為底時,如圖2,OB=AB,則B(10,6),向x軸正方向平移了10-8=2;

圖2
以O(shè)B為底邊時,如圖3,AB=OA=20,則AD=,
則OD=OA-AD或OA+AD,即OD=,
所以向x軸正半軸移動了18<0,不符合,合去,或

圖3
以AB為底時,如圖4,OB=OA=20,則OD=,
所以向x軸正半軸移動了.
綜上,答案為:點B沿 軸向右平移2個單位或個單位

圖4

【考點精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角),以及對三角形的外接圓與外心的理解,了解過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,線段AC=6cm,線段BC=15cm,點MAC的中點,在CB上取一點N,使得CNNB=1:2,求MN的長.

(2)如圖2,BOE=2AOEOF平分∠AOB,EOF=20°.求∠AOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中畫出兩條相交直線y=x和y=kx+b,交點為(x0 , y0),在x軸上表示出不與x0重合的x1 , 先在直線y=kx+b上確定點(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(x2 , y1),然后在x軸上確定對應(yīng)的數(shù)x2 , …,依次類推到(xn , yn-1),我們來研究隨著n的不斷增加,xn的變化情況.如圖1(注意:圖在下頁上),若k=2,b=—4,隨著n的不斷增加,xn逐漸(填“靠近”或“遠(yuǎn)離”)x0;如圖2,若k= ,b=2,隨著n的不斷增加,xn逐漸(填“靠近”或“遠(yuǎn)離”)x0;若隨著n的不斷增加,xn逐漸靠近x0 , 則k的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2018次運動后,動點P的坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄的是流花河今年某一周內(nèi)的水位變化情況,上周末(星期六)的水位已達(dá)到警戒水位米.(正號表示水位比前一天上升,負(fù)號表示水位比前一天下降)

星期

水位變化

本周哪一天河流的水位最高?哪一天河流的水位最低?它們位于警戒水位之上還是之下?

與上周末相比,本周末河流的水位是上升了還是下降了?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DE是過點A的直線,BDDE于D,CEDE于點E;

(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:ABAC

(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標(biāo)系的原點O在格點上, 軸、軸都在網(wǎng)格線上.線段AB的端點A、B在格點上.

(1)將線段AB繞點O逆時針90°得到線段A1B1,請在圖中畫出線段A1B1;

(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點O成中心對稱,請在圖中畫出線段A2B2;

(3)在(1)、(2)的條件下,點P是此平面直角坐標(biāo)系內(nèi)的一點,當(dāng)以點A、B、B2P為頂點的四邊形是平行四邊形時,請直接寫出點P的坐標(biāo):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點C是線段AB上一點,點M,N,P分別是線段AC,BC,AB的中點.

(1)若AB=12 cm,則MN的長度是______cm;

(2)若AC=3 cm,CP=1 cm,求線段PN的長度.

查看答案和解析>>

同步練習(xí)冊答案