【題目】如圖,在長方形ABCD中,將△ABC沿AC對折至△AEC位置,CE與AD交于點F.
(1)試說明:AF=FC;(2)如果AB=12,BC=16,求AF的長
【答案】(1)證明見解析;(2)12.5.
【解析】
(1)根據(jù)折疊的性質(zhì)可得∠ACB=∠ACF,根據(jù)矩形的性質(zhì)可得∠ACB=∠CAF,則即可得證;
(2)設(shè)AF=x,則DF=16﹣x,在Rt△CDF中,利用勾股定理得到關(guān)于x的方程,然后求解方程即可.
解:(1)∵四邊形ABCD為矩形,△ABC與△AEC關(guān)于AC對稱,
∴∠ACB=∠CAF,∠ACB=∠ACF,
∴∠CAF=∠ACF,
∴AF=FC;
(2)設(shè)AF=x,則DF=16﹣x,
在Rt△CDF中,CF2=DF2+CD2,
∴x2=(16﹣x)2+122,
解得x=12.5.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,將△DEF如圖擺放,使得∠D的兩條邊分別經(jīng)過點B和點C.
(1)當將△DEF如圖1擺放時,則∠ABD+∠ACD= 度;
(2)當將△DEF如圖2擺放時,請求出∠ABD+∠ACD的度數(shù),并說明理由.
(3)能否將△DE擺放到某個位置時,使得BD、CD同時平分∠ABC和∠ACB?直接寫出結(jié)論 (填“能”或“不能”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AD>AB
(1)分別作∠ABC和∠BCD的平分線,交AD于E、F.
(2)線段AF與DE相等嗎?請證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB∥CD,∠ABC=90°,動點P從A點出發(fā),沿A→D→C→B勻速運動,設(shè)點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
⑴①AD= , CD= , BC= ; (填空)
②當點P運動的路程x=8時,△ABP的面積為y= ; (填空)
⑵求四邊形ABCD的面積
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知某船于上午8點在A處觀測小島C在北偏東60°方向上.該船以每小時30海里的速度向東航行到B處,此時測得小島C在北偏東30°方向上.船以原速度再繼續(xù)向東航行1.5小時到達小島C的正南方D點.求船從A到D一共走了多少海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB'C'D'的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=115°,則∠α=____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在第九章中我們研究了幾種特殊四邊形,請根據(jù)你的研究經(jīng)驗來自己研究一種特殊四邊形——箏形.
初識定義:兩組鄰邊分別相等的四邊形是箏形.
(1)根據(jù)箏形的定義,寫出一種你學過的四邊形滿足箏形的定義的是 .
性質(zhì)研究:
(2)類比你學過的特殊四邊形的性質(zhì),通過觀察、測量、折疊、證明等操作活動,對如圖的箏形ABCD(AB=AD,BC=CD)的性質(zhì)進行探究,以下判斷正確的有 (填序號).
①AC⊥BD;②AC、BD互相平分;
③AC平分∠BAD和∠BCD;
④∠ABC=∠ADC;⑤∠BAD+∠BCD=180°;
⑥箏形ABCD的面積為AC×BD.
(3)在上面的箏形性質(zhì)中選擇一個進行證明.
性質(zhì)應用:
(4)直接利用你發(fā)現(xiàn)的箏形的性質(zhì)解決下面的問題:
如圖,在箏形ABCD中,AB=BC,AD=CD,點P是對角線BD上一點,過P分別做AD、CD垂線,垂足分別為點M、N.當箏形ABCD滿足條件 時,四邊形PNDM是正方形?請說明理由.
判定方法:
(5)回憶我們學習過的特殊四邊形的判定方法(如四邊相等的四邊形是菱形),用文字語言寫出箏形的一個判定方法(除定義外): .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連接AE、DE、DC.
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠ACD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com