【題目】如圖,在正方形ABCD中,點(diǎn)A的坐標(biāo)為(,),點(diǎn)D的坐標(biāo)為(,),且ABy軸,ADx軸. 點(diǎn)P是拋物線上一點(diǎn),過(guò)點(diǎn)PPEx軸于點(diǎn)E,PFy軸于點(diǎn) F

1)直接寫出點(diǎn)的坐標(biāo);

2)若點(diǎn)P在第二象限,當(dāng)四邊形PEOF是正方形時(shí),求正方形PEOF的邊長(zhǎng);

3)以點(diǎn)E為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)F,當(dāng)點(diǎn)P在正方形ABCD內(nèi)部(不包含邊)時(shí),求a的取值范圍.

【答案】1B (33);(2)正方形的邊長(zhǎng)為3;(33.

【解析】

1)先利用A點(diǎn)和D點(diǎn)坐標(biāo)得到正方形ABCD的邊長(zhǎng)為4,然后寫出B點(diǎn)坐標(biāo);

2)設(shè)點(diǎn)Px,x2+2x),利用正方形的性質(zhì)得到PE=PF,即x2+2x=-x,然后解方程求出x即可得到正方形PEOF的邊長(zhǎng);

3)設(shè)Pmm2+2m)(m≠0),則Em0),F0,m2+2m),利用頂點(diǎn)式表示以E為頂點(diǎn)的拋物線解析式為y=ax-m2,再把F0,m2+2m)代入得m=,接著求出拋物線y=x2+2xBC的交點(diǎn)坐標(biāo)為(1,3),則利用點(diǎn)P在正方形ABCD內(nèi)部(不包含邊)得到-1m1m≠0,然后分別解-1001即可.

1();(2)設(shè)點(diǎn)(,).

當(dāng)四邊形是正方形時(shí),,

當(dāng)點(diǎn)在第二象限時(shí),有.

解得.

,

.

∴正方形的邊長(zhǎng)為.

3)設(shè)點(diǎn)(),則點(diǎn)E),則點(diǎn)F(,).

為拋物線頂點(diǎn),

∴該拋物線解析式為.

∵拋物線經(jīng)過(guò)點(diǎn)

,化簡(jiǎn)得.

對(duì)于,令,解得; ,解得.

∵點(diǎn)在正方形內(nèi)部,

,且.

①當(dāng)時(shí)

由反比例函數(shù)性質(zhì)知,∴.

②當(dāng)時(shí)

由反比例函數(shù)性質(zhì)知,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定每位學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí). 為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,

請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?

(2)求戶外活動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)充頻數(shù)分布直方圖;

(3)戶外活動(dòng)時(shí)間的眾數(shù)和中位數(shù)分別是多少?

(4)若該市共有20000名學(xué)生,大約有多少學(xué)生戶外活動(dòng)的平均時(shí)間符合要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn):

)如圖①,中,,,,點(diǎn)邊上任意一點(diǎn),則的最小值為__________

)如圖②,矩形中,,,點(diǎn)、點(diǎn)分別在上,求的最小值.

)如圖③,矩形中,,,點(diǎn)邊上一點(diǎn),且,點(diǎn)邊上的任意一點(diǎn),把沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接、,四邊形的面積是否存在最小值,若存在,求這個(gè)最小值及此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對(duì)解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖1所示,用于回顧反思的時(shí)間(單位:分鐘)與學(xué)習(xí)收益的關(guān)系如圖2所示(其中是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過(guò)用于解題的時(shí)間.

1)求小迪解題的學(xué)習(xí)收益量與用于解題的時(shí)間之間的函數(shù)關(guān)系式;

2)求小迪回顧反思的學(xué)習(xí)收益量與用于回顧反思的時(shí)間的函數(shù)關(guān)系式;

3)問(wèn)小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在,蘇寧商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物.

(1)顧客購(gòu)買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購(gòu)物合算?

(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購(gòu)買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺(tái)冰箱買下,如果商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形紙片ABCD中,,將紙片沿對(duì)角線BD剪開,再將沿射線的方向平移得到.當(dāng)是直角三角形時(shí),平移的距離為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價(jià)為30元時(shí),每天可銷售200件:當(dāng)每件的售價(jià)每增加1元,每天的銷量將減少5件.

求銷量與售價(jià)之間的函數(shù)表達(dá)式;

如果每天的銷量不低于150件,那么,當(dāng)售價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

該商店老板熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出100元給希望工程,為保證捐款后每天剩余利潤(rùn)不低于2900元,請(qǐng)直接寫出該商品售價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtACB,C=90°,AC=3 cm,BC=4 cm,BC為直徑作☉OAB于點(diǎn)D.

(1)求線段AD的長(zhǎng)度;

(2)點(diǎn)E是線段AC上的一點(diǎn),試問(wèn)當(dāng)點(diǎn)E在什么位置時(shí),直線ED與☉O相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我校本部教師樓AD上有“育才中學(xué)”四個(gè)字的展示牌DE,某數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識(shí)估測(cè)該教師樓的高度,由于場(chǎng)地有限,不便測(cè)量,所以小明沿坡度i1的階梯從看臺(tái)前的B處前行50米到達(dá)C處,測(cè)得展示牌底部D的仰角為45°,展示牌頂部E的仰角為53°(小明的身高忽略不計(jì)),已知展示牌高DE15米,則該教師樓AD的高度約為( 。┟祝▍⒖紨(shù)據(jù):Sin37°≈06,cos 37°≈08,tan37°≈0.751.7

A. 102.5B. 87.5C. 85D. 70

查看答案和解析>>

同步練習(xí)冊(cè)答案